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ABSTRACT
We consider a viability based approach to guarantee recur-
sive feasibility of a finite horizon path planner. The path
planner is formulated as a hybrid system for which a differ-
ence inclusion reformulation is derived by exploiting the spe-
cial structure of the problem. Based on this approximation,
the viability kernel, which characterizes all safe states and
the corresponding safe controls, can be constructed. Using
the set of safe controls the computation time of the online
path planning can reduced, because only viable trajectories
are generated. Finally, a condition characterizing the unsafe
set in case of on-line obstacle avoidance is derived.

Categories and Subject Descriptors
J.2 [Physical Science & Engineering]: Engineering; I.6.4
[Simulation & Modeling]: Model Validation & Analysis

Keywords
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brid Systems

1. INTRODUCTION
Autonomous driving is a challenging task, especially if the

car is operated close to the handling limit and the avoid-
ance of obstacles has to be considered, see for example [6,
7]. In [13], optimization-based methods to solve this prob-
lem are presented, formulated as a receding finite horizon
optimal control problem. Such methods suffers from a com-
mon problem in finite receding horizon controller, the lack
of recursive feasibility. For problems with state and control
constraints it is possible, that decisions of the finite horizon
optimization problem steer the closed loop system to states,
where constraint violation is inevitable. This problem can
be tackled using invariant set theory, as described in [11],
where, different kinds of invariant sets are discussed, and
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necessary and sufficient conditions for feasibility of nonlin-
ear model predictive controllers are derived.

Viability theory, [1], was specifically developed to charac-
terize states where there exist system trajectories that sat-
isfy the constraints forever. Though the use of viability the-
ory in model predictive control has been considered [8] most
applications of the theory, normally establish safe/viable re-
gions in the state space. For example in applications such
as aerospace [12, 20], underwater vehicles [17, 18], and port-
folio management [3]. It had also been used to derive safe
feedback controllers, for example in [21].

In [22], a controller guaranteeing safety based on a stochas-
tic reach-avoid problem was successfully implemented on au-
tonomous RC cars, which shows that there is a potential gain
by incorporating safe controls in the task of autonomous
driving.

In this paper we will explore the use of viability theory for
path planning. In particular, we are interested in generat-
ing recursively feasible paths on-line, motivated by an auto-
matic driving application. We show that the use of viability
theory cannot only avoid recursive feasibility problems, but
also speed up the path planning process enabling real time
implementation. Related approaches have been reported in
[17] where the viability kernel is used to reconstruct safe tra-
jectories and in [10] where learned local viable solutions are
used to speed up the path planning, by categorizing dead
ends in a given environment/map as non viable.

Our starting point is the path planning algorithm pre-
sented in [13], that comprises a path planner and an model
predictive controller tracking the output of the path planner.
To formalize the process, we formulate the problem in the
framework of hybrid automata of [15]. We then reformulate
the resulting hybrid system as a discrete time difference in-
clusion. Based on this, the algorithms presented in [19] are
deployed to calculate the viability kernel.

Based on the viability kernel we then propose to recon-
struct all safe controls and in this way only generate trajec-
tories which stay in the viability kernel. This reduces the
computation time necessary for generating paths. As a con-
sequence, more trajectories and of longer time horizons can
be explored in the same amount of time, leading to a better
final path. To the best of the authors knowledge this is the
first time such an approach is proposed.

Finally, based on the concept of safe controls it is possible
to formulate a strong necessary condition to avoid a static
obstacle on the track of which the position is not known
in advance. This can be done by separating the problem



into the sub-problem of staying inside the track constraints,
and secondly avoiding static obstacles. Based on the the
concept of safe control inputs the separated solutions can be
efficiently combined.

In Section 2 the Hierarchical Receding Horizon Controller
from [13] is summarized and the path planning problem is
extended to multiple segments. In Section 3 the path plan-
ning method is formalized as a hybrid system and approx-
imated as a discrete time difference inclusion. In Section
4 the viability kernel is introduced and the algorithm pre-
sented in [19] is explained. In Section 5, the viability kernel
for the given track is calculated together with the recon-
structed safe controls. Based on the safe controls, an im-
proved online path planning algorithm is outlined, which is
significantly faster than the standard brute force approach.
Finally, a new necessary conditions to avoid a static obstacle
with a priori unknown position is presented in Section 6.

2. HIERARCHICAL RECEDING HORIZON
CONTROLLER

We consider a car driving along a track, see Figure 1,
whose boundaries are known a priori. The hierarchical re-
ceding horizon controller presented in [13] for this set-up
consists of two levels. At a top level possible trajectories
are generated (based on the current state of the car, infor-
mation about the track and a nonlinear dynamical model of
the vehicle) and the one that exhibits the largest progress
without leaving the track is selected. In the second level
the car model is linearized around the chosen trajectory and
the trajectory is tracked using a model predictive controller
(MPC).

Figure 1: Picture of the track and Kyosho dnano
cars, used in the experimental set up of [13]. A
video of the HRHC can be found at www.youtube.

com/watch?v=ioKTyc9bG4c

Here we provide a summary of the process and extend
it to account for multiple of the so-called zero acceleration
points.

2.1 Vehicle Model
The model used for the control design in [13] is a nonlinear

bicycle model based on the Pacejka tire model [4]. This
model captures the important dynamics, for example the
saturation of the nonlinear tire force.

The equations of motion for the car are derived around
the center of gravity (CoG), and the states are the position
coordinates X and Y, and the orientation ϕ relative to the
inertial frame. These three states characterize the kinematic
part of the model. The second part of the model is derived
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Figure 2: Schematic drawing of the car model

in a body fixed frame centered at the CoG. The states are
the longitudinal and lateral velocities vx and vy as well as
the yaw rate ω. The control inputs are the steering angle δ
and the pulse width modulation (PWM) duty cycle d of the
drive train motor. The complete equations of motion are

Ẋ = vx cos(ϕ)− vy sin(ϕ) , (1a)

Ẏ = vx sin(ϕ) + vy cos(ϕ) , (1b)

ϕ̇ = ω , (1c)

v̇x =
1

m
(Fr,x − Ff,y sin δ +mvyω) , (1d)

v̇y =
1

m
(Fr,y + Ff,y cos δ −mvxω) , (1e)

ω̇ =
1

Iz
(Ff,ylf cos δ − Fr,ylr) , (1f)

where m is the mass and Iz the moment of inertia of the
vehicle. Fr,x(vx, d) is the force produced by the drive train,
Fr,y(vx, vy, ω) and Ff,y(vx, vy, ω, δ) are the lateral forces at
the rear and the front wheel, calculated using the Pacejka
tire model. Lastly, lr and lf are the distances from the CoG
to the rear and the front wheel respectively.

2.2 Path Planning based on constant veloci-
ties

The path planning is based on zero acceleration trajecto-
ries, i.e. trajectories where the velocities remain constant
(in vehicle dynamics such trajectories correspond to steady
state cornering, whereas in aeronautics they are referred to
as trimmed flight). The path planning algorithm of [13] ex-
plores a finite number of such zero acceleration trajectories,
generated by gridding the stationary velocities for different
forward velocities and steering angles. For each, state tra-
jectories are generated by integrating the differential equa-
tion of the kinematic model under the assumption that the
stationary velocity can be reached instantaneously. Even
though this assumption leads to an unrealistic sudden jump
in the velocities, it allows one to handle unstable equilibria,
for example stationary velocity points representing drifting,
which improves maneuverability. Once all the state tra-
jectories have been computed the path planning algorithm
processes them, discards the ones that violate the state con-
straints (e.g. leave the track), and among the remaining ones
selects the one that leads to the greatest progress. Where
the progress of a considered trajectory is measured by the
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argument of the projection operator p : R2 → (0, L] which
maps any position X, Y , to the arc length θ of the parame-
terized center line Xcen(θ), Y cen(θ).

p(X,Y ) := arg min
θ

(X −Xcen(θ))2 + (Y − Y cen(θ))2 . (2)

p(X
N
,Y

N
)

Figure 3: Schematic drawing of the path planning as
presented in [13], where the red trajectories get dis-
carded and the orange is the one witht the greatest
progerss, which is indicated in blue.

Due to the computational complexity associated with gen-
erating, storing and processing the candidate trajectories
(many of which will end up being discarded for violating the
constraints), only trajectories comprising a single zero accel-
eration segment were considered in [13]. However, thanks to
the computational savings afforded by the viability theory
based path planner developed below we are now able to im-
prove the performance considering trajectories comprising
multiple zero acceleration segments each of duration Tpp.

To ensure that consecutive zero acceleration segments are
compatible with each other (and to limit the growth of the
search tree which would otherwise be exponential in the
number of gridded constant velocity points) we only consider
transitions which are achievable by the nonlinear dynamical
model (vx, vy and ω) in a certain small time step Tt. The
problem can be posed as a feasibility problem (3) where the
goal is to find controls which allow a transition from a con-
stant velocity point i defined as v̄(i) = (vx(i), vy(i), ω(i)) to
another point j in at most Tt seconds, subject to the vehicle
dynamics and the control constraints,

min
d,δ,tf

0 (3a)

s.t. v(0) = (vx(i), vy(i), ω(i)) = v̄(i) , (3b)

v(tf ) = (vx(j), vy(j), ω(j)) = v̄(j) , (3c)

v̇(t) =


v̇x = 1

m
(Fr,x − Ff,y sin δ +mvyω) ,

v̇y = 1
m

(Fr,y + Ff,y cos δ −mvxω) ,

ω̇ = 1
Iz

(Ff,ylf cos δ − Fr,ylr) ,
(3d)

tf ∈ [0, Tt] , (3e)

d ∈ [d, d̄] δ ∈ [δ, δ̄] . (3f)

This problems allows to classify all the transitions from
one stationary point to another, which are then marked as
allowed transitions. An illustrative example of such allowed

transitions is shown in Figure 4, with 9 constant velocity
points for 3 grid points in vx and δ. The allowed transitions
from one constant velocity point v̄(4) are shown by arrows.
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Figure 4: Schematic drowing of allowed transitions
from v̄(4) to other constant velocity points.

In practice the problem (3) is solved using the backward
reachability algorithm of the multi-parametric toolbox 3.0
[9] using a model linearized around the target velocity and
bounds on the controls. The allowed time to reach the new
stationary velocity is Tt = 0.1s. The constant velocity points
are generated by uniformly gridded between vx = 0.5 and
3.5m/s, with 13 grid points, and using between 5 and 11
grid points in δ. This leads to 105 constant velocity points,
with about 20 allowed transition at each constant velocity
point. Additionally, every discrete velocity level is connected
to neighboring levels, similar as shown in Figure 4.

The main challenge for an efficient implementation is the
exponential growth of the resulting tree in the number of
zero acceleration segments considered. To get an approxi-
mation of the complexity, assume there are 20 possible tra-
jectories at each point in the tree. Thus, after 2 levels there
are already 400 trajectories. All of those trajectories have
to be checked for feasibility with respect to the track and
the progress has to be calculated for all trajectories which
stay inside the track.

In robotics a similar path planning concept was derived in
[5]. However in contrast to the method proposed in [5] and
related works such as [7], where different trims are linked by
pre-computed maneuvers. We propose to directly link trims
and limit the possible transition from one trim to another.
Therefore each segment has the same duration Tpp, which
simplifies the later hybrid system analysis.

3. HYBRID SYSTEM REFORMULATION
The proposed path planning, is similar to a control system

with zero order hold and quantized control inputs, which
additionally are restricted, based on the last applied control
input. Thus, the path planning fits well into a hybrid model
framework.

3.1 Path Planner as Hybrid Automaton
The discrete mode q of the hybrid system is the current

stationary velocity, and the continuous evolution is given
by the kinematic model with the corresponding stationary
velocity. Furthermore, a time state is needed to ensure
that at every Tpp seconds a jump to a different discrete
mode/stationary velocity is possible. Thus the continuous



evolution is given by,

Ẋ = vx(q) cos(ϕ)− vy(q) sin(ϕ) , (4a)

Ẏ = vx(q) sin(ϕ) + vy(q) cos(ϕ) , (4b)

ϕ̇ = ω(q) , (4c)

Ṫ = 1 , (4d)

where vx(q), vy(q), ω(q) are the stationary velocities at the
discrete mode q. The discrete transitions takes place every
Tpp seconds, and a discrete control input determines the dis-
crete mode after the transition. To capture this behavior we
consider the following modification of the hybrid automata
considered in [15].

Definition 1. A hybrid automaton H is a collection
H = (Q,Z, V, f,D,E,G,R) comprising

• discrete state variables q ∈ Q,

• continuous state variables z ∈ Z,

• discrete control inputs v ∈ V ,

• vector field f(·, ·) : Q× Z → Z,

• domain set, Dom(·) : Q→ 2Z ,

• edges, E ⊂ Q×Q,

• guard, G(·, ·) : E × V → 2Z ,

• reset map, r(·, ·) : E ×X → 2Z .

The main difference to the definitions of [15, 16] is that
a discrete input appears in the discrete transition guards.
To avoid technical difficulties with the definition of execu-
tions of the hybrid automaton given below we introduce the
following assumption (adapted from [15]).

Assumption 1. The cardinality of Q is finite. Z = Rn,
for some n ≥ 0. For all q ∈ Q, the vector field f(z, q) is
globally Lipschitz continuous in z. For all e ∈ E, there exist
v such that G(e, v) 6= ∅, and for all, z ∈ G(e, v), r(e, z) 6= ∅.

Definition 2. [16] A hybrid time set τ = {Ii}Ni=0 is a
finite or infinite sequence of intervals of the real line, such
that

• Ii = [τi, τ
′
i ], for all i < N ,

• if N <∞, then either IN = {τN , τ ′N} or IN = {τN , τ ′N ),

• τi ≤ τ ′i = τi+1 for all i.

We are now in a position to define, the execution that the
hybrid automaton H accepts. The following definition is
adapted from [16].

Definition 3. [16], Let τ = {Ii}Ni=0 be a hybrid time set
and consider the sequence of functions {qi(·)}Ni=0, {zi(·)}Ni=0,
{vi(·)}Ni=0, with qi(·) : Ii → Q, zi(·) : Ii → Z, vi(·) : Ii → V .
The collection of these sequences of functions is called exe-
cution of the hybrid automaton H starting from initial
condition (q0(τ0), z0(τ0)), if and only if it satisfies the fol-
lowing conditions:

• Discrete evolution: For all i < N ,

1. (qi(τ
′
i), qi+1(τi+1)) ∈ E,

2. zi(τ
′
i) ∈ G(qi(τ

′
i), qi+1(τi+1), vi+1(τi+1)),

3. zi+1(τi+1) = r(qi(τ
′
i), qi+1(τi+1), zi(τ

′
i)).

• Continuous evolution: For all i with τi < τ ′i ,

1. (qi(t) = qi(τi)) and (vi(t) = vi(τi)) for all t ∈ Ii,
2. zi(·) : Ii → Z is the solution of the differential

equation
żi(t) = f(qi(t), zi(t)),

over the interval Ii with the initial condition zi(τi),

3. zi(t) ∈ Dom(qi(t)) for all t ∈ [τi, τ
′
i).

The main difference to the corresponding definition of [16]
is point 2 in the discrete evolution: The guard depends on
vi+1(τi+1) allowing control of the discrete state after a tran-
sition by selecting this variable.

The path planner outlined above can be captured by a
hybrid automaton H with,

• Q = {1, 2, 3, · · · , 105},
• z = (X,Y, ϕ, T ) ∈ R4 = Z,

• V ⊂ Z,

• f(z, q) given in Eq (4),

• Dom(q) = {(X,Y, ϕ, T ) ∈ R4|T ≤ Tpp},
• E, all edges where a transition is possible,

• special guard, with two input arguments

G(e, v) =

{
{z ∈ R4|T ≥ Tpp} if G(qi, qi+1, v) 6= ∅
∅ else

,

• r(e, (X,Y, ϕ, T )) = {(X̂, Ŷ , ϕ̂, T̂ ) ∈ R4|
X̂ = X, Ŷ = Y, ϕ̂ = ϕ, T̂ = 0}.

It is easy to see that the constant velocities and the allowed
transitions can be always designed such that the path plan-
ner automaton satisfies Assumption 1. The Lipschitz condi-
tion is easy to verify as the vector field in (4) is differentiable
with bounded derivatives.

3.2 Reformulation as a Difference Inclusion
The viability kernel is originally developed for differen-

tial inclusions, see [1]. If the system of interest is a hybrid
system one would have to resort to sophisticated hybrid vi-
ability algorithms [2, 16] to address this problem. In our
case, this would dictate gridding the 4 dimensional continu-
ous space, for each of the 105 discrete modes, a task that is
computationally very demanding.

Because the discrete transitions take place in regular in-
tervals however, one can reformulate the hybrid dynamics in
terms of a differential inclusion, by embedding the discrete
state into the real numbers, expressing the discrete dynamics
as a transition relation, and writing the sampled data sys-
tem representation of the continuous dynamics. This then
allows the use of the much simpler difference inclusion via-
bility algorithm. For our system this would require gridding
a 3 dimensional space, in addition to the coarse grid corre-
sponding to the discrete state.

Let us first define the state space of the difference inclu-
sion, s = (X,Y, ϕ, q) and the states at a specific time step k
as sk = (Xk, Yk, ϕk, qk). We define a set-valued map F (sk)
as

F (sk) =


FX(sk)
FY (sk)
Fϕ(sk)
Fq(sk)

 , (5)



which describes the following discrete time difference inclu-
sion

sk+1 ∈ F (sk) . (6)

To define the elements of the set-valued map (5), letX(sk, t)
Y (sk, t)
ϕ(sk, t)

 . (7)

donate the set of solutions of (4a)-(4c) starting at (Xk, Yk, ϕk),
when q is equal to all qk+1 such that there exist a v ∈ V for
which G(qk, qk+1, v) 6= ∅. Based on this set of solution, let
us define,

FX(sk) = {X(sk, Tpp} , (8a)

FY (sk) = {Y (sk, Tpp} , (8b)

Fϕ(sk) = {ϕ(sk, Tpp} . (8c)

By using the previously defined execution of a hybrid au-
tomaton, it is possible to compactly write all possible dis-
crete transitions,

Fq(sk) = {qk+1 ∈ Q|∃v ∈ V : ∃G(qk, qk+1, v) 6= ∅} (9)

Thus the path planner is now reformulated as an difference
inclusion.

4. VIABILITY THEORY
Having converted our hybrid system into a difference in-

clusion, here we focus on the approach of [19], where an
approximation of the viability kernel for difference inclusion
is derived which converges if the discretization goes to zero.
We briefly review the results from [19] used in our work.

Viability theory answers the question, for which initial
conditions inside a closed set K does there exist a solution
to a difference inclusion, which remains in K forever.

Therefore, let Ξ be a finite dimensional vector space and
let K be a compact subset of Ξ. Finally the dynamical
system of interest is the following discrete time difference
inclusion,

ξk+1 ∈ F (ξk) , ∀k ≥ 0 . (10)

A solution of (10) is viable, if it stays in K forever. Which
can be characterized by,

ξk+1 ∈ F (ξk) , ∀k ≥ 0 , (11a)

ξ0 = ξ ∈ K , (11b)

ξk ∈ K , ∀k ≥ 0 , (11c)

In other words, there exist a portion of (10), starting at ξ0 ∈
K, which remains in K at each step k. The main interest
in viability theory is the subset of initial points ξ0 ∈ K,
for which at least one viable solution exist. Let us define a
subset D, for which this is true.

Definition 4. [19] Let F : Ξ → Ξ be a set valued map.
A subset D ⊂ Ξ is a discrete viability domain of F if;

∀ξ ∈ D, F (ξ) ∩D 6= ∅ (12)

Let K be a subset of Ξ. The discrete viability kernel of K
under F , is the largest closed subset of closed discrete viabil-
ity domain contained in K and it is denoted by V iabF (K).

4.1 Viability Kernel Algorithm
The discrete viability kernel algorithm is a constructive

approach to generate the viability kernel. Let us consider a
sequence of subsets Kn, defined as follows,

K0 = K , (13a)

Kn+1 = {ξ ∈ Kn|F (ξ) ∩Kn 6= ∅} . (13b)

We define,

K∞ =

∞⋂
n=0

Kn . (14)

Theorem 1. [19] Let F : Ξ→ Ξ be an upper-semi-continuous
set-valued map with closed values and let K be a compact
subset of Dom(F ). Then,

K∞ = V iabF (K) (15)

The discrete viability kernel algorithm allows theoretically
to calculate the exact viability kernel, however, the algo-
rithm cannot be implemented as presented, since it requires
storing and manipulating arbitrary sets. To implement the
algorithm one has to resort to discretization, giving rise to
a finite difference inclusion.

If the the system of interest is a finite difference inclusion
it is only necessary that the system is has finite nonempty
values, such that the viability algorithm solves the problem
exact. If one is interested in approximating a difference in-
clusion with a finite one, it is necessary to guarantee that
the discretized version has nonempty values. This can be
achieved by an extension of the difference inclusion by a ball
of radius r. If the radius of the ball is larger than the grid
spacing, it is guaranteed that discretizaton of this system has
nonempty values. One specific choice for r is the exact grid
spacing. If the discretization of any set is denoted by sub-
script h the grid spacing can be defined by ‖ξ− ξh‖ ≤ α(h),
which for a suitable discretization goes to zero if h goes to
zero.

If F
α(h)
h is the finite reduction of the set valued map F first

inflated with a ball of the size α(h). The viability kernel of
this system is given by the viability kernel algorithm as,

K
α(h),∞
h :=

∞⋂
n=0

K
α(h),n
h = V iab

F
α(h)
h

(Kh) . (16)

Which if the dicretization goes to zero coincides with the
true viability kernel⋂

h>0

V iab
F
α(h)
h

(Kh) = V iabF (K) . (17)

Furthermore, V iabFr
h

(Kh) is the reduction of the V iabFr (K)
to the finite set Ξh.

5. VIABILITY KERNEL FOR THE TRACK
To apply the viability algorithm to the path planner two

challenges have to be overcome. The first one, is related
to the assumption in Theorem 1, the theorem assumes that
F : Ξ→ Ξ is upper-semicontinuous. Due to the finite differ-
ence inclusion in (9) given by the mode jumps, this assump-
tion is clearly not fulfilled. However, the finite dynamics
are decoupled from the rest of the difference inclusion, and



the discrete dynamics are finite valued by construction of
the hybrid system as Q is a finite set. Thus, the viability
kernel algorithm will converge to the correct kernel. The
second part of the difference inclusion describing the con-
tinuous evolution of the hybrid system and is continuous in
(X,Y, ϕ) for a fixed discrete mode.

The second problem comes form the large sampling time
Tpp of the path planner. The resulting difference inclusion
only describes the jumps form an initial condition to all pos-
sible next positions. The continuous movement in between
is completely neglected. However, it is possible that both
the start and the end point of a trajectory are within the
set K, but the continuous movement leaves and reenters the
set. To solve this problem, the viability algorithm is slightly
adjusted such that not only at least one of the possible end
points of the continuous evolution has to lie in Kn (13) but
additionally also the whole continuous evolution has to stay
within K.

5.1 Implementation
The goal is to find a viable solution of the path planning

algorithm within the track, see Figure 5. Thus, let us define
K as,

K :=

 (X,Y ) ∈ Xtrack ,
ϕ ∈ [−π, π] ,
q ∈ Q .

(18)

In this way, X,Y are constrained within the track, ϕ is not
constrained, if all orientations are wrapped to ±π and q is
constrained within the set of allowed modes.

The space is gridded as follows,

X = [−1.15, 1.8]m with 74 points , (19a)

Y = [−1.9, 1.7]m with 91 points , (19b)

ϕ = [−π, π] with 84 points , (19c)

q = {1, 2, · · · , 105} . (19d)

The grid is chosen, such that the whole track is included,
while at the same time the resolution of the grid is as fine as
possible with a limited number of grid points. The spatial
discretizations has has a resolution of 4 cm which is rather
coarse compared to the size of the car which is 12 × 5 cm.
However, this already leads to 59,393,880 grid points.

The resulting viability kernel is hard to visualize, as pro-
jections down to only X,Y normally fill the whole track.
This hides the interesting influence of the angle, and the
current discrete mode, which corresponds to the velocity.
Therefore, in Figure 5, the viability kernel is only visualized
for a fixed angle ϕ = 30.5◦, and for one discrete mode, which
corresponds to the car driving straight with 2 m/s. First,
it can be seen that a large part of the track is not viable.
However, this is expected, as we look at a specific velocity
and angle, which is not suited for many positions. Interest-
ing to see is that this velocity and angle is viable in regions
in front of some curves which indicates that this could be a
good velocity to drive through the curve.

5.2 Safe Controls
Controlled systems, such as sk+1 = f(sk, vk), can be re-

formulated as a difference inclusion of the form,

sk+1 ∈ {f(sk, v) | v ∈ V} , (20)
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Figure 5: In the left figure, viability kernel for ϕ =
30.5◦ and the car driving straight with 2 m/s, q = 44,
and in the right figure, visulaization of the difference
inclusion for the given angle and mode.

where V is the set of allowed controls. For such difference
inclusions, once the viability kernel has been computed it
is possible to reconstruct safe control inputs that keep the
state in the kernel. The set of safe controls for a finite dis-
cretization of s ∈ S denoted by sh ∈ Sh is given by,

Vsafe(sh) =




v ∈ V , sh ∈ Sh |
f(sh, v) + α(h)B∩
V iab

F
α(h)
h

(Kh) 6= ∅

 if sh ∈
V iab

F
α(h)
h

(Kh)

∅ otherwise

.

(21)

For this approach to work, V has to be a finite set, as it is
given in model (9). In the general case a new reduction of
V to a finite set has to be introduced.
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Figure 6: In the left figure, visualization of all possi-
tions, where one control, corresponding to breaking
and doing a left turn is safe. For ϕ = 30.5◦ and the
car driving straight with 2 m/s, q = 44, and in the
right figure visualization of the difference inclusion,
and highlighting the control of interest.

Figure 6, shows the same case as Figure 5, however, now
only the positions where the control relating to breaking and
going left is a safe control. It is clearly visible that this is a
subset of the viability kernel visualized in Figure 5.

5.3 Fast Recursive Feasible Path Planning
All the calculation of the viability kernel and the safe con-

trols can be done off-line, where computation times are not



critical. The path planning as it is presented in [13] is done
online, where the computation time is crucial.

As mentioned in the introduction, the path planner pre-
sented in [13] has no recursive feasibility guarantees. The
resulting problem can be seen in Figure 7 where the best
trajectory is not recursive feasible.
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Figure 7: All possible trajectories which stay inside
the track, in green all trajectories which stay in the
viability kernel, in red all the trajectroies which are
not recursive feasible, and in doted black the best
trajectory of all trajectories and in blue the best
recursive feasible trajectory.

Having the viability kernel there are two different ways to
guarantee recursive feasibility. The first and more obvious
is to use the viability kernel as a terminal set constraint, an
approach typically adopted with invariant sets in MPC. In
our setting this would require one to generate a large num-
ber of candidate trajectories, then prune the ones that find
themselves outside the kernel at the end of the horizon. In
turn this means that computation is wasted on generating
trajectories that would later on be discarded. An alterna-
tive, proposed here, is to use the safe controls Vsafe(sh) to
generate only trajectories that stay in the kernel throughout.
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Figure 8: Visualization of a comparision between
the naivly generated trajectories on the left, and
the trajectories generated using the Vsafe(sh) for a
path planning horizon of two.

Figure 8, shows that the naive approach to generate all
trajectories which stay inside the track generates signifi-
cantly more trajectories, 216 compared to 145 using the
proposed trajectory generation using Vsafe(xh). The naive
approach additionally generated a lot of trajectories which
get discarded as they leave the track. In total the naive
algorithm generates 341 trajectories. All of these have to

Table 1: Computation times of the naive and the
viable path planner

Naive Path Planner Vsafe(x) Path Planner
mean [s] 0.219 0.0205
max [s] 0.530 0.0749
min [s] 0.034 0.003

be checked with the track constraints, whereas the proposed
algorithm does not need any track constraints checks. Note
that the additional 71 trajectories of the naive path planner
are of no interest as they leave the viability kernel, hence
will leave the track in the future.

The proposed path planning strategy reduce the compu-
tation time by about one order of magnitude on the aver-
age, see Table 5.3. The computation times are generated by
starting both path planners at the same position and letting
them run for 2000 time steps, which corresponds to multiple
laps around the track. The simulations are performed on a
MacBook Pro with a 2.4 GHz Intel Core i7 processor, using
MATLAB 2013a.

The proposed path generation also improves the quality
of the closed loop behavior of the path planner. Lets com-
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Figure 9: Comparision between closed loop behaiv-
ior of the naive path planner with one and two
segemtns, and the proposed viable path planner

pare the closed loop behavior of the proposed path planner,
with the naive path planner. Two versions of the naive path
planner are considered, first one with two constant veloc-
ity segments. And secondly one with one constant velocity
segment, as implemented in [13], the comparison is done as
the computation time is similar to the proposed path plan-
ner. The proposed path planner has two constant velocity
segments and the same parameters as the first naive path
planner.

Lets focus on three different positions, marked in Figure
9, where the recursive feasible path planner is significantly
better. At location one, the two non-viable path planner
start turning too early which later on needs more breaking
to be able to perform the sharp turn. In the second location,
the naive path planners go close to the constraint, which
allows to drive faster, however they end up in position where
it is impossible to get around the next turn (only achievable
by allowing constraint violations). In the last location the
viable path planner starts to move up earlier than the naive



path planners, which allows to drive smoother through the
chicane and avoid feasibility problems at the second apex.

6. ONLINE OBSTACLE AVOIDANCE
One advantage of on-line generating the possible paths

instead of just saving the optimal sequence for each point
in Sh is the possibility of incorporating obstacle avoidance.
Using viability theory and the idea of reconstructing the
safe controls, it is possible to improve the basic approach of
finding a path which avoids an obstacle.

The idea is to formulate an obstacle avoidance problem in
relative coordinates, where a square obstacle is placed in the
origin. Based on this set-up it is possible to calculate the
viability kernel, which gives all initial states from where a
successful obstacle avoidance is possible. By formulating the
problem in relative coordinates, the viability kernel does not
depend on the position of the obstacle in the global coordi-
nate system, which allows one to decouple the calculations
related to the obstacle avoidance and the track constraint
satisfaction.

Figure 10 shows the complement of the viability kernel for
obstacle avoidance (unsafe set) in relative coordinates. For
every relative orientation this corresponds to a triangular
region in front of the obstacle where the collision can no be
avoided. The position and the size of the triangle depends
on the relative orientation and the speed of the car; Figure
10 shows a slice of the unsafe set for a speed of 2m/s.

Figure 10: Visualization of the complement of the
viability kernel, for the car driving straight with 2
m/s, and an obstacle centered at the origin.

The issue in formulating the obstacle problem in relative
coordinates, and decoupling the problem of avoiding an ob-
stacle and staying inside the track is that the individual
answers cannot be combined easily. There may exist a cer-
tain point s0 where a solution exists which stays inside the
track and one which avoids the obstacle, but not one that
achieves both at the same time.

Using the reconstructed safe controls, however, it is possi-
ble to formulate necessary conditions for a state to be viable
with respect to both the track and the obstacle constraints.
Let Voa

safe(sR) be the safe controls, for the obstacle avoidance
problems in relative coordinates sR. Then, a necessary con-

dition that a trajectory is recursively feasible for the com-
bined problem, with the obstacle located at sob, is that the
end point of the trajectory sN has to fulfill the following
condition,

Vsafe(sN ) ∩ Voa
safe(R(ϕoa)(sN − sob)) 6= ∅ , (22)

where R(ϕoa) is the rotation matrix for a positive ration
around ϕoa. This is clearly a necessary condition, because
if the intersection is empty, there is no control which can
guarantee viability with respect to both problems. However,
it does not guarantee that by playing an allowed control the
intersection at the next time step is also nonempty.
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Figure 11: Visualization of the different unsafe sets
for an obstacle avoidance problem. Where the car is
driving straight with 2m/s parallel to the track, and
the obstacle is visualized using a box. In blue stars,
the transformed relative obstacle avoidance viability
kernel is visualized by projecting it onto Sh and in
red cicles the proposed necessary conditon.

In Figure 11, the difference between the presented neces-
sary condition, and the complement of the obstacle avoid-
ance viability kernel are visualized. The car is driving straight
with 2 m/s parallel to the track borders and the obstacle is
marked with a box. The complement of the viability kernel
is visualized with blue stars, and it is clearly visible that
there is a dead end below the obstacle. At these positions
it is possible to avoid the obstacle on the right side, but,
this way is blocked by the track constraints. The proposed
necessary condition, (22), can solve this problem and also
categorizes this dead end as unsafe. The set of points ful-
filling the new condition is clearly a subset of the one lie in
the obstacle viability kernel. As the set of safe controls is
empty if the state is not in the viability kernel, the inter-
section with another set of safe controls will also be empty.
Thus this condition gives a unsafe set which is at least the
size of the complement of the viability kernel.

7. CONCLUSION/FUTURE WORK
In this paper we presented a viability formulation to guar-

antee the feasibility of a finite horizon path planner. The
reconstructed safe controls are successfully used to reduce
the online computation time of the path planner by a factor



of 10. This is achieved by only generating trajectories which
are viable, which allows us to generate fewer trajectories and
a priori guarantee that the vehicle stays within the track.
Additionally, a new necessary condition is proposed, which
establishes a restrictive unsafe region for obstacles with an
a priori unknown position, by using the intersection of safe
controls of an obstacle avoidance problem formulated in rel-
ative coordinates and the global safe controls with respect
to the track.

In further work, we try to overcome the limitation that
the finite viability kernel is the reduction of the discrete
viability kernel. This is not an issue for low dimensional
system, where it is possible to solve the viability algorithm
for dense grids. However, in higher dimensional application,
where the gird is coarse, the information of the grid point
cannot be generalized to the a(h) hyper-box around the grid
point. In this work, we assumed that this can be done, which
sometimes leads to infeasibilities of the path planner.

Additionally, it is also of interest under which conditions
the necessary condition (22) is sufficient.
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