Interactive Motion Planning for
Autonomous Racing

Dr. Alexander Liniger

UPenn mLab - October 2020




p Motivation

(Autonomous driving

» Active research area since the 1980s
- Research done in industry and academia
- Waymo/Google: > 20 mio miles

» Take safety critical decisions in an uncertain
environment

ETHzurich ifa



p Motivation

(Autonomous driving

» Active research area since the 1980s
- Research done in industry and academia
- Waymo/Google: > 20 mio miles

» Take safety critical decisions in an uncertain
environment

(Autonomous racing

» Drive as fast as possible around a track
- Miniature race car set-up using RC cars
- Formula Student Driverless
- Roborace

» Structured but competitive environment

ETHzurich ifa



p Motivation

;
kAutonomous driving

» Active research area since the 1980s
- Research done in industry and academia
- Waymo/Google: > 20 mio miles

» Take safety critical decisions in an uncertain
environment

‘Autonomous racing

» Drive as fast as possible around a track
- Miniature race car set-up using RC cars
- Formula Student Driverless
- Roborace

» Structured but competitive environment

_

ETHzurich ifa



p Motivation

(Autonomous driving

» Active research area since the 1980s
- Research done in industry and academia
- Waymo/Google: > 20 mio miles

» Take safety critical decisions in an uncertain
environment

(Autonomous racing

» Drive as fast as possible around a track
- Miniature race car set-up using RC cars
- Formula Student Driverless
- Roborace

» Structured but competitive environment

ETHzurich ifa



p Autonomous Racing Challenges

ETHzurich #



p Autonomous Racing Challenges

( Driving at the handling limit

» If we do not drive at the limit we drive to slow
» Motion planning for a highly nonlinear system

Liniger, Domahidi & Morari OCAM 15, Liniger & Lygeros T-CST 17

ETHzurich ifa



p Autonomous Racing Challenges

( Driving at the handling limit

» If we do not drive at the limit we drive to slow
» Motion planning for a highly nonlinear system

Liniger, Domahidi & Morari OCAM 15, Liniger & Lygeros T-CST 17

(Staying safe inside the track

» If we crash we lose!
» Infinite horizon constraint satisfaction

Liniger & Lygeros HSCC 15, Liniger & Lygeros T-CST 17

ETHzurich ifa



p Autonomous Racing Challenges

( Driving at the handling limit

» If we do not drive at the limit we drive to slow
» Motion planning for a highly nonlinear system

Liniger, Domahidi & Morari OCAM 15, Liniger & Lygeros T-CST 17

(Staying safe inside the track

» If we crash we lose!
» Infinite horizon constraint satisfaction

Liniger & Lygeros HSCC 15, Liniger & Lygeros T-CST 17

(Interact with other race cars

» The art of overtaking and interacting with other cars
» Decision making in a highly dynamical non-cooperative environment

Liniger & Lygeros T-CST 20
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P Racing Ingredients

(Finish first

progress

»  Approximated by maximizing progress

» (Generates racing trajectories E P
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b Experimental Set-Up

IR Camera Controller 1:43 miniature
System Linux PC RC race cars

Ethernet | Bluetooth
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p Car Model

» Bicycle model, with nonlinear lateral tire forces (Pacejka)

X = vy cos(p) — v, sin(p)

Y = vsin(p) + v, cos(p)

Y =w

. 1 .

Vy = E(Fr’x — Ffysind + mvyw)
v, = E(F,,y + Ff, cosd — mvyw)

1
W = /—(Ff,y/f COS O — Fr,y/r)

» Highly nonlinear 6 dimensional system
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p Hierarchical Control Structure

(Path planning based on constant velocities primitives

» Plan for slow dynamics
» Reduced dimension
» Long discretization times

(M PC-based trajectory tracking

» Considering full dynamical bicycle model
» Linearization points given by path planner
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p Constant Velocities

» \elocities (v, vy,w) “always” at steady state

» Find points where (vx,vy,w) are constant

L)
Ihesieess

“““‘ 0

%,

w [rad/s]

v, [m/s] 35 s [rad] J [rad] - 35 v, [m/s]

»  Gridding stationary velocity points
» Library of possible movements (Motion Primitives)
» Low dimensional grid (~100) can capture the whole system
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> Path Planning Model

» Library of constant velocity “primitives”

»  Assumptions:
New constant velocity can be reached immediately
Stay at the constant velocity for a fix time period Tpp
Transition between constant velocity are restricted ux € U(qx)

Tpp
Xt =X+ [ Blu) cos(ep) — B (uy)sin() e
0
Tpp
Vi =i+ [ musin(e) + 5 (ue) cos()de
0

Tpp
Pk+1 = Pk +/ w(uc)dt
0

dk+1 = Uk

» Discrete time dynamical system: xx11 = f(xk, ux) ux € U(qk)
ETH:zurich ifs



p Path Planning Algorithm

(Breath—First Path Generation

max  p(xy)
u,Xx

s.t. xg=x

Y [m]

Xk—l—l — f(Xkr Uk)r Uy - Z/{(Xk) P
XKEK, k:]_,,/\/ 03t

02 0 0.2 0.4 0.6 0.8
X [m]
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p Path Planning Algorithm

(Breath—First Path Generation

0.4
03r

max  p(xy)
u,Xx

0.1

s.t. xg=x

Y [m]

Xk4+1 = f(Xk, Uk), Ug € U(Xk) orf

XKEK, k:]_,,/\/ :ois:

0.4 L=
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p Path Planning Algorithm

(Breath—First Path Generation

max  p(xy)
u,Xx
s.t. xg=x
Xkr1 = F(Xk, Uk), Uk € U(Xk)

Xk € K, k=1 ..,N

Y [m]

» Tree grows exponentially in the horizon
» Time to check track constraints is the bottle neck

» Optimal trajectory often not recursive feasible/viable
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p Path Planning Algorithm

(Breath—First Path Generation

max  p(xy)
u,Xx

Y [m]

s.t. xg=x
Xkr1 = F(Xk, Uk), Uk € U(Xk)
k=1,....N

Xk € K,

» Tree grows exponentially in the horizon
Time to check track constraints is the bottle neck

b
Optimal trajectory often not recursive feasible/viable

>

Can we only generate safe trajectories
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p Viability Theory

»  Given:
A difference inclusion xx11 € F(xk) = {f(xk, ux) | ux € U}
K C R" is a compact set

(

Xk+1 € F(Xk), Vk >0
» Asolutionisviable if: < xge K

L Xk € K, Vk >0
(Definition [Saint-Pierre 94]
Let F : R" — R" be a set valued map. Then a F(X)/
closed subset D C R” is a viability domain of F if: o

D

VxeD, F(x)ND#

» The viability kernel Viabr(K), is the largest closed viability domain
contained in K
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P Viability Kernel Algorithm

»  Given:
A discrete difference inclusion xx11 € F(xx)
K C R" is a compact set K = KO

» Construction of Viabr(K): K
Sequence of nested subsets
K=K
Kt =1Ixe K" F(x) N K" # (0}

(Proposition [Saint-Pierre 94]

Let F : R" — R" be a upper-semicontinuous set-valued map with closed
values and let K be a compact subset of Dom(F)

Viabe(K) =[] K"
n=0

ETHzurich ifa



p Viability Kernel

» Viabllity kernel can be computed by discretizing the state-space

» F(xx) given by the path planning model
Sample-data system viability kernel algorithm

» K given by the track constraints

Y [m]
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p Viability Kernel

» Viability kernel can be computed by discretizing the state-space

» F(xx) given by the path planning model
Sample-data system viability kernel algorithm

» K given by the track constraints

2

How can we inco the viability kernel
-0.5F :
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P Viability Constraints

Imposing viability constraints in the path planning problem

0.4

>

0.3

0.2 .

max  p(xy)
u,Xx

Y [m]

st. Xxp=x
Xk+1 = f(Xk, Uk) )

Xk € K,

Ux € U(Xx)
k=1,...N
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P Viability Constraints

Imposing viability constraints in the path planning problem

0.4

>

0.3

0.2 .

max  p(xy)
u,Xx

s.t. xp=x =
X1 = F(Xk, uk), Uk € U(Xk) T
Xk € K, k=1,....N
max  p(xy)
ux
s.t. xg=x g |

X1 = F(Xk, Uk), Uk € U(xk)

xkEV/ab,:(K), k=1,.. N
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p Discriminating Kernel

» Discretizing the state-space does introduce errors
» Errors can be modeled as an adversarial player
» Depending on grid size and Lipschitz constant

» Discriminating kernel —> gamified viability kernel

2 — - - 2 —
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p Discriminating Kernel

» Discretizing the state-space does introduce errors

» Errors can be modeled as an adversarial player

» Depending on grid size and Lipschitz constant

» Discriminating kernel —> gamified viability kernel

max  p(xy)
u,Xx

st. Xxp=x

Y [m]

Xkr1 = F(Xk, Uk), Uk € U(Xk) orr
f(Xk,Uk)EDI'SCG(K), k:O,,N—l 03}

-0.4 =

-0.2
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p Simulation Results

» Every 20 ms redo path planning and MPC step

» Simulation using full non-linear model

» Based on sensitivity study we determined

Tpp: 0168
N =3
Ny =129

» Comparing: Viability vs Discrimination vs no kernel

i i . median |
Kerne| | Mean lap | #constr. o, time | Max comp.
time[s] | violations | S°MP- M€ time [ms]
g 5 [ms] 5
No 876 | 4 . 3226 | 2477
_________ Viab | 85/ . 0 ....094 . 7968
Disc 8.60 | 1 . 0870 | 7.533
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p Simulation
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p Experimental Results

3l —Vi.ab
—-=-Disc

0 2 4 6 8 10 12 14 16
center line [m]
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Experimental Results
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Experimental Results

Viability
7 Kernél



» Bimatrix Racing Games

» Every trajectory is an action of a car
Each trajectory has a payoff
Payoff depends on actions of both cars
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» Bimatrix Racing Games

» Every trajectory is an action of a car
Each trajectory has a payoff
Payoff depends on actions of both cars )

o —— I\
N L e
O —

di,1 di2  di13 bi1 bio bis
EE\{/—— A= [82,1 a2 82,3} B = {bm b b2,3}

— d31 d32 d33 b3,1 b3,2 b3,3

» The leader is always the car which is ahead at the beginning

» A trajectory pair is feasible if:
Trajectories stay inside the track and do not collide

ETHzurich ifs



b Three Racing Games

p
LSequential Game

A

;
LCooperative Game

J

7

 Blocking Game

J L

A
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P Three Racing Games

(Sequential Game

» EXxploiting the leader-follower structure
- Low payoff if a trajectory leaves the track
- Progress payoff if a trajectory is inside the track
- Low payoff for the follower if trajectories collide

;
LCooperative Game

[Blocking Game
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;
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0.83 0.83 0.83
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P Three Racing Games

(Sequential Game

» EXxploiting the leader-follower structure
- Low payoff if a trajectory leaves the track
- Progress payoff if a trajectory is inside the track
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P Three Racing Games

p
LSequential Game

-
LCooperative Game

» Both cars consider collisions
- Low payoff if a trajectory leaves the track
- Low payoff if the trajectories collide
- Progress payoff if a trajectory is feasible

(Blocking Game

ETHzurich ifa
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P Three Racing Games

p
LSequential Game

-
LCooperative Game

» Both cars consider collisions
- Low payoff if a trajectory leaves the track
- Low payoff if the trajectories collide
- Progress payoff if a trajectory is feasible

(Blocking Game

[0.83 0.83 0.83]

A= 10.88 0.88
@ -0 -0 -10]

@i@—- 081 0.86 —107

B= 1081 -1 -10
@_®) (081 086 -10,
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P Three Racing Games

p
LSequential Game

A

;
LCooperative Game

A

[Blocking Game

» Same collision structure as the cooperative game, but:
» Additional reward for staying in front at the end of the horizon
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P Three Racing Games

p
LSequential Game

A

;
LCooperative Game

A

[Blocking Game

» Same collision structure as the cooperative game, but:
» Additional reward for staying in front at the end of the horizon
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O —
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P Three Racing Games
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P Three Racing Games

p
LSequential Game

A

;
LCooperative Game

A

[Blocking Game

» Same collision structure as the cooperative game, but:
» Additional reward for staying in front at the end of the horizon

—1
A -1 -1
_ 0.88 0.88 —1 0.88
-_ ~10  -10 —-10  —10
i ~1
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—— | o081 009 ~1
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P Three Racing Games

p
LSequential Game

A

;
LCooperative Game

A

[Blocking Game

» Same collision structure as the cooperative game, but:
» Additional reward for staying in front at the end of the horizon

-1
-1 -1
- 088+05 083 -1 0.83+0.5

| -10 -10 -10 -10 |
i ~1 —10]
~1 ~1 ~10

_—— | 081 09 -1 —10
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P Three Racing Games

p
LSequential Game

A

;
LCooperative Game

A

[Blocking Game

» Same collision structure as the cooperative game, but:
» Additional reward for staying in front at the end of the horizon

-1
-1 -1
- 088+05 083 -1 0.83+0.5

| -10 -10 -10 —10
I ~1 —107
~1 ~1 ~10

2= | os81 0.9+ 0.5 —1 ~10
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P Three Racing Games

p
LSequential Game

A

;
LCooperative Game

A

[Blocking Game

» Same collision structure as the cooperative game, but:
» Additional reward for staying in front at the end of the horizon

(0.83+05 —1 0.83 0.83+40.5]
085+05 -1 -1 085+05

A= 1083105 08 -1 08805
-_ ~10 ~10 -10 ~10
0.81 1 0.86+05 —10
B 0.81 —1 1 ~10
—— | os1 0.9+05 —1 —10
98081405 09405 086+05 —10,
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P Three Racing Games

p
LSequential Game

A

;
LCooperative Game

A

;
LBlocking Game )

» Same collision structure as the cooperative game, but:
» Additional reward for staying in front at the end of the horizon

How should a car choose a trajectory?

(0.83+05 —1 0.83 0.83+40.5]
085+05 -1 -1 085+05
088+05 083 -1 0.383+0.5

| -10  -10 -10 —10
T 081 ~1  086+05 —10]
0.81 ~1 ~1 ~10

9| 0Bl 09405 -1 10
8 B)0081+05 09+05 086+05 —10
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> Equilibria concepts

» Find an equilibrium trajectory pair of the bimatrix game
Pure strategies (N0 mixed strategies)
(i*, %) € ' x ' is an equilibrium trajectory pair

( Stackelberg Equilibria

» Game with leader-follower structure
- Leader can enforce his trajectory on the follower ¥ = argmax min a;;
- Follower plays the best response: | .’erl JeR)
R(i) = argmaxb; J = R({")

jer?

(Nash Equilibria

» None of the players has a benefit from
unilaterally changing the trajectory ajjo > ajj Viel
b,‘*J* > b,‘*,j V_]. - F2
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p Sequential and Cooperative Game

sequential game cooperative game

[0.83 0.83 0.83] 0.83 0.83 0.83]
A= 1088 0.88 0.88 A=1088 -1 0.88

@ 0 -0 -10] @B -10 -10 -10

@i@\{ 0.81 0.86 —10] 0.81 0.86 —10]
B=|081 -1 -10 =081 -1 -10

@_®)[081 086 —10] (g_@>[0.81 086 —10
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p Sequential and Cooperative Game

sequential game cooperative game

[0.83 0.83 0.83] 0.83 0.83 0.83]
A= 1088 0.88 0.88 A=1088 -1 0.88

@ 0 -0 -10] @B -10 -10 -10

@i@\{ 0.81 0.86 —10] 0.81 0.86 —10]
B=|081 -1 -10| B=[081 -1 -10

@jf" 10.81 0.86 —10] |:¢jj:._0.81 0.86 —10]

» The sequential game can be solved by sequential maximizing
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p Sequential and Cooperative Game
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» The sequential game can be solved by sequential maximizing
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»  Sequential game feasible => equilibrium of the cooperative game
- Predicting ideal behavior of other cars and play best response is Nash
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p Sequential and Cooperative Game

sequential game cooperative game
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» The sequential game can be solved by sequential maximizing

»  Sequential game feasible => equilibrium of the cooperative game
- Predicting ideal behavior of other cars and play best response is Nash

» Cooperative game is feasible if there exists a feasible trajectory pair
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» If there exists a blocking trajectory and the staying ahead reward is big
enough, the Stackelberg equilibrium is a blocking trajectory pair
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» A blocking trajectory is not a Nash equilibrium (unless it is a Nash
equilibrium of the cooperative game)

ETHzurich ifs



b Blocking Trajectories

[(083+05 —1 0.83 0.83+0.5]

085+05 -1 -1 0.85+0.5
0.88+0.5 (0.88) —1 0.83+0.5

- —10 —10 -10 —10

@.{ [ 0.81 -1 0.86 +0.5 —10]
0.81 —1 -1 —10

| 08 (09405 -1 —10
H—¥1081+05 09+05 0.86+0.5 —10

» If there exists a blocking trajectory and the staying ahead reward is big
enough, the Stackelberg equilibrium is a blocking trajectory pair

» A blocking trajectory is not a Nash equilibrium (unless it is a Nash
equilibrium of the cooperative game)

Stackelberg equilibrium seems best for all games
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b Blocking Trajectories
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» If there exists a blocking trajectory and the staying ahead reward is big
enough, the Stackelberg equilibrium is a blocking trajectory pair

» A blocking trajectory is not a Nash equilibrium (unless it is a Nash
equilibrium of the cooperative game)

Stackelberg equilibrium seems best for all games

What is the resulting behavior of these games”?
ETHziirich ifa




p Simulation

» Play game in a receding horizon fashion
Solve game + MPC - apply first input - repeat

» Trajectory pruning based on viability and discriminating kernel
Viab -> aggressive driver / Disc -> cautious driver

v

500 different initial conditions, each run 4.5 laps
Both cars start close to each other

sequential game  cooperative game  blocking game

# of overtaking maneuvers 113 857 414

colliding time steps per lap 2.4 2.0 2.3
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p Simulation

sequential game cooperative game
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sequential game  cooperative game  blocking game

# of overtaking maneuvers 113 857 414

colliding time steps per lap 2.4 2.0 2.3
How do the cars drive?
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cooperative game blocking game
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p Summary and Outlook

» We proposed a complet autonomous racing pipeline
Different behavior is seen for different viability kernels and games

» Interesting insights into behavior of non-cooperative decisions
Sequential maximization and leader-follower structure
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High-performance implementation using GPU
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p Summary and Outlook

» We proposed a complet autonomous racing pipeline
Different behavior is seen for different viability kernels and games

» Interesting insights into behavior of non-cooperative decisions
Sequential maximization and leader-follower structure

» Reliable and real-time feasible games
Consider uncertainty in game formulation
Reinforcement learning-based terminal cost+constraints

High-performance implementation using GPU

» Model-learning for MPC

Learning model correction can be massively improve performance
Xkr1 = F(Xk, Uk) + pap(Xk, Uk)
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