Interactive Motion Planning for Autonomous Racing

Dr. Alexander Liniger

UPenn mLab - October 2020

Autonomous driving

- Active research area since the 1980s
 - Research done in industry and academia
 - Waymo/Google: > 20 mio miles
- Take safety critical decisions in an uncertain environment

Autonomous driving

- Active research area since the 1980s
 - Research done in industry and academia
 - Waymo/Google: > 20 mio miles
- Take safety critical decisions in an uncertain environment

Autonomous racing

- Drive as fast as possible around a track
 - Miniature race car set-up using RC cars
 - Formula Student Driverless
 - Roborace
- Structured but competitive environment

Autonomous driving

- Active research area since the 1980s
 - Research done in industry and academia
 - Waymo/Google: > 20 mio miles
- Take safety critical decisions in an uncertain environment

Autonomous racing

- Drive as fast as possible around a track
 - Miniature race car set-up using RC cars
 - Formula Student Driverless
 - Roborace
- Structured but competitive environment

Autonomous driving

- Active research area since the 1980s
 - Research done in industry and academia
 - Waymo/Google: > 20 mio miles
- Take safety critical decisions in an uncertain environment

Autonomous racing

- Drive as fast as possible around a track
 - Miniature race car set-up using RC cars
 - Formula Student Driverless
 - Roborace
- Structured but competitive environment

Driving at the handling limit

- If we do not drive at the limit we drive to slow
- Motion planning for a highly nonlinear system

Liniger, Domahidi & Morari OCAM 15, Liniger & Lygeros T-CST 17

Driving at the handling limit

- If we do not drive at the limit we drive to slow
- Motion planning for a highly nonlinear system

Liniger, Domahidi & Morari OCAM 15, Liniger & Lygeros T-CST 17

Staying safe inside the track

- If we crash we lose!
- Infinite horizon constraint satisfaction

Liniger & Lygeros HSCC 15, Liniger & Lygeros T-CST 17

Driving at the handling limit

- If we do not drive at the limit we drive to slow
- Motion planning for a highly nonlinear system

Liniger, Domahidi & Morari OCAM 15, Liniger & Lygeros T-CST 17

Staying safe inside the track

- If we crash we lose!
- Infinite horizon constraint satisfaction

Liniger & Lygeros HSCC 15, Liniger & Lygeros T-CST 17

Interact with other race cars

- The art of overtaking and interacting with other cars
- Decision making in a highly dynamical non-cooperative environment

Liniger & Lygeros T-CST 20

Finish first

- Approximated by maximizing progress
- Generates racing trajectories

Finish first

- Approximated by maximizing progress
- Generates racing trajectories

Finish first

- Approximated by maximizing progress
- Generates racing trajectories

Do not collide with other cars

good

bad

Finish first

- Approximated by maximizing progress
- Generates racing trajectories

Do not collide with other cars

good

bad

Stay inside the track

good

bad

Experimental Set-Up

IR Camera System Controller Linux PC

1:43 miniature RC race cars

Ethernet

Bluetooth

Experimental Set-Up

IR Camera System Controller Linux PC

1:43 miniature RC race cars

Ethernet

Bluetooth

Bicycle model, with nonlinear lateral tire forces (Pacejka)

$$\dot{X} = v_x \cos(\varphi) - v_y \sin(\varphi)$$

$$\dot{Y} = v_x \sin(\varphi) + v_y \cos(\varphi)$$

$$\dot{\varphi} = \omega$$

$$\dot{v}_x = \frac{1}{m} (F_{r,x} - F_{f,y} \sin \delta + m v_y \omega)$$

$$\dot{v}_y = \frac{1}{m} (F_{r,y} + F_{f,y} \cos \delta - m v_x \omega)$$

$$\dot{\omega} = \frac{1}{I_z} (F_{f,y} I_f \cos \delta - F_{r,y} I_r)$$

Highly nonlinear 6 dimensional system

Bicycle model, with nonlinear lateral tire forces (Pacejka)

$$\dot{X} = v_x \cos(\varphi) - v_y \sin(\varphi)$$

$$\dot{Y} = v_x \sin(\varphi) + v_y \cos(\varphi)$$

$$\dot{\varphi} = \omega$$

$$\dot{v}_x = \frac{1}{m} (F_{r,x} - F_{f,y} \sin \delta + m v_y \omega)$$

$$\dot{v}_y = \frac{1}{m} (F_{r,y} + F_{f,y} \cos \delta - m v_x \omega)$$

$$\dot{\omega} = \frac{1}{I_z} (F_{f,y} I_f \cos \delta - F_{r,y} I_r)$$

- Highly nonlinear 6 dimensional system
- Separation is slow and fast dynamics

Bicycle model, with nonlinear lateral tire forces (Pacejka)

$$\dot{X} = v_x \cos(\varphi) - v_y \sin(\varphi)$$

$$\dot{Y} = v_x \sin(\varphi) + v_y \cos(\varphi)$$

$$\dot{\varphi} = \omega$$

$$\dot{v}_x = \frac{1}{m} (F_{r,x} - F_{f,y} \sin \delta + m v_y \omega)$$

$$\dot{v}_y = \frac{1}{m} (F_{r,y} + F_{f,y} \cos \delta - m v_x \omega)$$

$$\dot{\omega} = \frac{1}{I_z} (F_{f,y} I_f \cos \delta - F_{r,y} I_r)$$

- Highly nonlinear 6 dimensional system
- Separation is slow and fast dynamics

Bicycle model, with nonlinear lateral tire forces (Pacejka)

$$\dot{X} = v_x \cos(\varphi) - v_y \sin(\varphi)$$
 $\dot{Y} = v_x \sin(\varphi) + v_y \cos(\varphi)$
 $\dot{\varphi} = \omega$

$$\dot{v}_{x} = \frac{1}{m} (F_{r,x} - F_{f,y} \sin \delta + m v_{y} \omega)$$

$$\dot{v}_{y} = \frac{1}{m} (F_{r,y} + F_{f,y} \cos \delta - m v_{x} \omega)$$

$$\dot{\omega} = \frac{1}{I_{z}} (F_{f,y} I_{f} \cos \delta - F_{r,y} I_{r})$$

- Highly nonlinear 6 dimensional system
- Separation is slow and fast dynamics

Hierarchical Control Structure

Path planning based on constant velocities primitives

- Plan for slow dynamics
- Reduced dimension
- Long discretization times

MPC-based trajectory tracking

- Considering full dynamical bicycle model
- Linearization points given by path planner

Hierarchical Control Structure

Path planning based on constant velocities primitives

- Plan for slow dynamics
- Reduced dimension
- Long discretization times

MPC-based trajectory tracking

- Considering full dynamical bicycle model
- Linearization points given by path planner

Constant Velocities

- Velocities (v_x, v_y, ω) "always" at steady state
- Find points where (v_x, v_y, ω) are constant

- Gridding stationary velocity points
- Library of possible movements (Motion Primitives)
- Low dimensional grid (~100) can capture the whole system

Path Planning Model

- Library of constant velocity "primitives"
- Assumptions:
 - New constant velocity can be reached immediately
 - Stay at the constant velocity for a fix time period T_{pp}
 - Transition between constant velocity are restricted $u_k \in \mathcal{U}(q_k)$

$$X_{k+1} = X_k + \int_0^{T_{pp}} \bar{v}_x(u_k) \cos(\varphi) - \bar{v}_y(u_k) \sin(\varphi) dt$$

$$Y_{k+1} = Y_k + \int_0^{T_{pp}} \bar{v}_x(u_k) \sin(\varphi) + \bar{v}_y(u_k) \cos(\varphi) dt$$

$$\varphi_{k+1} = \varphi_k + \int_0^{T_{pp}} \bar{\omega}(u_k) dt$$

$$q_{k+1} = u_k$$

▶ Discrete time dynamical system: $x_{k+1} = f(x_k, u_k)$ $u_k \in \mathcal{U}(q_k)$

$$\max_{u,x} \quad p(x_N)$$
s.t. $x_0 = x$

$$x_{k+1} = f(x_k, u_k), \quad u_k \in \mathcal{U}(x_k)$$

$$x_k \in K, \qquad k = 1, ..., N$$

$$\max_{u,x} p(x_N)$$
s.t. $x_0 = x$

$$x_{k+1} = f(x_k, u_k), \quad u_k \in \mathcal{U}(x_k)$$

$$x_k \in K$$
, $k = 1, ..., N$

$$\max_{u,x} p(x_N)$$

s.t.
$$x_0 = x$$

 $x_{k+1} = f(x_k, u_k), \quad u_k \in \mathcal{U}(x_k)$

$$x_k \in K$$
, $k = 1, ..., N$

$$\max_{u,x} p(x_N)$$

s.t.
$$x_0 = x$$

$$x_{k+1} = f(x_k, u_k), \quad u_k \in \mathcal{U}(x_k)$$

$$x_k \in K$$
, $k = 1, ..., N$

$$\max_{u,x} \quad p(x_N)$$
s.t. $x_0 = x$

$$x_{k+1} = f(x_k, u_k), \quad u_k \in \mathcal{U}(x_k)$$

$$x_k \in K, \qquad k = 1, ..., N$$

- Tree grows exponentially in the horizon
- Time to check track constraints is the bottle neck
- Optimal trajectory often not recursive feasible/viable

$$\max_{u,x} \quad p(x_N)$$
s.t. $x_0 = x$

$$x_{k+1} = f(x_k, u_k), \quad u_k \in \mathcal{U}(x_k)$$

$$x_k \in K, \qquad k = 1, ..., N$$

- Tree grows exponentially in the horizon
- Time to check track constraints is the bottle neck
- Optimal trajectory often not recursive feasible/viable

Breath-First Path Generation

$$\max_{\substack{\mathsf{u},\mathsf{x}\\ \mathsf{u},\mathsf{x}}} p(x_N)$$
s.t. $x_0 = x$

$$x_{k+1} = f(x_k, u_k), \quad u_k \in \mathcal{U}(x_k)$$

$$x_k \in \mathcal{K}, \qquad k = 1, ..., N$$

- Tree grows exponentially in the horizon
- Time to check track constraints is the bottle neck
- Optimal trajectory often not recursive feasible/viable

Can we only generate safe trajectories

Viability Theory

- Given:
 - A difference inclusion $x_{k+1} \in F(x_k) = \{f(x_k, u_k) \mid u_k \in \mathcal{U}\}$
 - $K \subset \mathbb{R}^n$ is a compact set

▶ A solution is viable if:
$$\begin{cases} x_{k+1} \in F(x_k), & \forall k \ge 0 \\ x_0 \in K \\ x_k \in K, & \forall k \ge 0 \end{cases}$$

Definition [Saint-Pierre 94]

Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a set valued map. Then a closed subset $D \subset \mathbb{R}^n$ is a viability domain of F if:

$$\forall x \in D, \quad F(x) \cap D \neq \emptyset$$

 The viability kernel Viab_F(K), is the largest closed viability domain contained in K

Viability Theory

- Given:
 - A difference inclusion $x_{k+1} \in F(x_k) = \{f(x_k, u_k) \mid u_k \in \mathcal{U}\}$
 - $K \subset \mathbb{R}^n$ is a compact set

A solution is viable if:
$$\begin{cases} x_{k+1} \in F(x_k), & \forall k \ge 0 \\ x_0 \in K \\ x_k \in K, & \forall k \ge 0 \end{cases}$$

Definition [Saint-Pierre 94]

Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a set valued map. Then a closed subset $D \subset \mathbb{R}^n$ is a viability domain of F if:

$$\forall x \in D, \quad F(x) \cap D \neq \emptyset$$

A viable trajectory is a safe trajectory

Viability Kernel Algorithm

- Given:
 - A discrete difference inclusion $x_{k+1} \in F(x_k)$
 - $K \subset \mathbb{R}^n$ is a compact set
- Construction of Viab_F(K):
 - Sequence of nested subsets

$$K^{0} = K$$

$$K^{n+1} = \{ x \in K^{n} \mid F(x) \cap K^{n} \neq \emptyset \}$$

Proposition [Saint-Pierre 94]

Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a upper-semicontinuous set-valued map with closed values and let K be a compact subset of Dom(F)

$$Viab_F(K) = \bigcap_{n=0}^{\infty} K^n$$

Viability Kernel

- Viability kernel can be computed by discretizing the state-space
- $F(x_k)$ given by the path planning model
 - Sample-data system viability kernel algorithm
- K given by the track constraints

Viability Kernel

- Viability kernel can be computed by discretizing the state-space
- $F(x_k)$ given by the path planning model
 - Sample-data system viability kernel algorithm
- K given by the track constraints

Viability Kernel

- Viability kernel can be computed by discretizing the state-space
- $F(x_k)$ given by the path planning model
 - Sample-data system viability kernel algorithm
- K given by the track constraints

Viability Kernel

- Viability kernel can be computed by discretizing the state-space
- \blacktriangleright $F(x_k)$ given by the path planning model
 - Sample-data system viability kernel algorithm
- K given by the track constraints

How can we incorporate the viability kernel

Viability Constraints

Imposing viability constraints in the path planning problem

$$\max_{u,x} \quad p(x_N)$$
s.t. $x_0 = x$

$$x_{k+1} = f(x_k, u_k), \quad u_k \in \mathcal{U}(x_k)$$

$$x_k \in K, \qquad k = 1, ..., N$$

Viability Constraints

Imposing viability constraints in the path planning problem

$$\max_{u,x} \quad p(x_N)$$
s.t. $x_0 = x$

$$x_{k+1} = f(x_k, u_k), \quad u_k \in \mathcal{U}(x_k)$$

$$x_k \in K, \qquad k = 1, ..., N$$

$$\max_{u,x} \quad p(x_N)$$
s.t. $x_0 = x$

$$x_{k+1} = f(x_k, u_k), \quad u_k \in \mathcal{U}(x_k)$$

$$x_k \in Viab_F(K), \quad k = 1, ..., N$$

Discriminating Kernel

- Discretizing the state-space does introduce errors
- Errors can be modeled as an adversarial player
- Depending on grid size and Lipschitz constant
- Discriminating kernel —> gamified viability kernel

Discriminating Kernel

- Discretizing the state-space does introduce errors
- Errors can be modeled as an adversarial player
- Depending on grid size and Lipschitz constant
- Discriminating kernel —> gamified viability kernel

$$\max_{u,x} \quad p(x_N)$$
 s.t. $x_0 = x$
$$x_{k+1} = f(x_k, u_k), \quad u_k \in \mathcal{U}(x_k)$$

$$f(x_k, u_k) \in Disc_G(K), \ k = 0, ..., N-1$$

Simulation Results

- Every 20 ms redo path planning and MPC step
- Simulation using full non-linear model
- Based on sensitivity study we determined

$$T_{pp} = 0.16 s$$

$$- N = 3$$

-
$$N_M = 129$$

Comparing: Viability vs Discrimination vs no kernel

Kernel	mean lap time [s]	# constr. violations	median comp. time [ms]	max comp. time [ms]
No	8.76	4	32.26	247.7
Viab	8.57	0	0.904	7.968
Disc	8.60	1	0.870	7.533

Simulation Results - Viab vs Disc

Bimatrix Racing Games

- Every trajectory is an action of a car
 - Each trajectory has a payoff
 - Payoff depends on actions of both cars

Bimatrix Racing Games

- Every trajectory is an action of a car
 - Each trajectory has a payoff
 - Payoff depends on actions of both cars

Bimatrix Racing Games

- Every trajectory is an action of a car
 - Each trajectory has a payoff
 - Payoff depends on actions of both cars

- The leader is always the car which is ahead at the beginning
- A trajectory pair is feasible if:
 - Trajectories stay inside the track and do not collide

Sequential Game

Cooperative Game

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}$$

Sequential Game

- Exploiting the leader-follower structure
 - Low payoff if a trajectory leaves the track
 - Progress payoff if a trajectory is inside the track
 - Low payoff for the follower if trajectories collide

Cooperative Game

$$A =$$

$$B =$$

Sequential Game

- Exploiting the leader-follower structure
 - Low payoff if a trajectory leaves the track
 - Progress payoff if a trajectory is inside the track
 - Low payoff for the follower if trajectories collide

Cooperative Game

$$A = \begin{bmatrix} \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} -10 \\ -10 \\ -10 \end{bmatrix}$$

Sequential Game

- Exploiting the leader-follower structure
 - Low payoff if a trajectory leaves the track
 - Progress payoff if a trajectory is inside the track
 - Low payoff for the follower if trajectories collide

Cooperative Game

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} -10 \\ -10 \\ -10 \end{bmatrix}$$

Sequential Game

- Exploiting the leader-follower structure
 - Low payoff if a trajectory leaves the track
 - Progress payoff if a trajectory is inside the track
 - Low payoff for the follower if trajectories collide

Cooperative Game

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} -10 \\ -10 \\ -10 \end{bmatrix}$$

Sequential Game

- Exploiting the leader-follower structure
 - Low payoff if a trajectory leaves the track
 - Progress payoff if a trajectory is inside the track
 - Low payoff for the follower if trajectories collide

Cooperative Game

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} -10 \\ -10 \\ -10 \end{bmatrix}$$

Sequential Game

- Exploiting the leader-follower structure
 - Low payoff if a trajectory leaves the track
 - Progress payoff if a trajectory is inside the track
 - Low payoff for the follower if trajectories collide

Cooperative Game

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

Sequential Game

Cooperative Game

- Both cars consider collisions
 - Low payoff if a trajectory leaves the track
 - Low payoff if the trajectories collide
 - Progress payoff if a trajectory is feasible

$$A =
 \begin{bmatrix}
 0.83 & 0.83 & 0.83 \\
 0.88 & -1 & 0.88 \\
 -10 & -10 & -10
 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

Sequential Game

Cooperative Game

- Both cars consider collisions
 - Low payoff if a trajectory leaves the track
 - Low payoff if the trajectories collide
 - Progress payoff if a trajectory is feasible

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & -1 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

Sequential Game

Cooperative Game

- Same collision structure as the cooperative game, but:
- Additional reward for staying in front at the end of the horizon

Sequential Game

Cooperative Game

- Same collision structure as the cooperative game, but:
- Additional reward for staying in front at the end of the horizon

Sequential Game

Cooperative Game

- Same collision structure as the cooperative game, but:
- Additional reward for staying in front at the end of the horizon

Sequential Game

Cooperative Game

- Same collision structure as the cooperative game, but:
- Additional reward for staying in front at the end of the horizon

Sequential Game

Cooperative Game

- Same collision structure as the cooperative game, but:
- Additional reward for staying in front at the end of the horizon

Sequential Game

Cooperative Game

- Same collision structure as the cooperative game, but:
- Additional reward for staying in front at the end of the horizon

Sequential Game

Cooperative Game

- Same collision structure as the cooperative game, but:
- Additional reward for staying in front at the end of the horizon

Sequential Game

Cooperative Game

- Same collision structure as the cooperative game, but:
- Additional reward for staying in front at the end of the horizon

$$\begin{bmatrix} 0.83 + 0.5 & -1 & 0.83 & 0.83 + 0.5 \\ 0.85 + 0.5 & -1 & -1 & 0.85 + 0.5 \\ 0.88 + 0.5 & 0.88 & -1 & 0.88 + 0.5 \\ -10 & -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & -1 & 0.86 + 0.5 & -10 \\ 0.81 & -1 & -1 & -10 \\ 0.81 & 0.9 + 0.5 & -1 & -10 \\ 0.81 + 0.5 & 0.9 + 0.5 & 0.86 + 0.5 & -10 \end{bmatrix}$$

Sequential Game

Cooperative Game

Blocking Game

- Same collision structure as the cooperative game, but:
- Additional reward for staying in front at the end of the horizon

How should a car choose a trajectory?

$$\begin{bmatrix} 0.83 + 0.5 & -1 & 0.83 & 0.83 + 0.5 \\ 0.85 + 0.5 & -1 & -1 & 0.85 + 0.5 \\ 0.88 + 0.5 & 0.88 & -1 & 0.88 + 0.5 \\ -10 & -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & -1 & 0.86 + 0.5 & -10 \\ 0.81 & -1 & -1 & -10 \\ 0.81 & 0.9 + 0.5 & -1 & -10 \\ 0.81 + 0.5 & 0.9 + 0.5 & 0.86 + 0.5 & -10 \end{bmatrix}$$

Equilibria concepts

- Find an equilibrium trajectory pair of the bimatrix game
 - Pure strategies (no mixed strategies)
 - $(i^*, j^*) \in \Gamma^1 \times \Gamma^2$ is an equilibrium trajectory pair

Stackelberg Equilibria

- Game with leader-follower structure
 - Leader can enforce his trajectory on the follower
 - Follower plays the **best response**:

$$R(i) = \arg \max_{i \in \Gamma^2} b_{i,j}$$

$$i^* = \arg \max_{i \in \Gamma^1} \min_{j \in R(i)} a_{i,j}$$

$$j^* = R(i^*)$$

Nash Equilibria

 None of the players has a benefit from unilaterally changing the trajectory

$$a_{i^*,j^*} \ge a_{i,j^*} \quad \forall i \in \Gamma^1$$

 $b_{i^*,j^*} \ge b_{i^*,j} \quad \forall j \in \Gamma^2$

Sequential and Cooperative Game

sequential game cooperative game

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix} \qquad A = \begin{bmatrix} 0.83 \\ 0.88 \\ -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix} \qquad B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & -1 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

Sequential and Cooperative Game

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix} \qquad B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix} \qquad A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & -1 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

The sequential game can be solved by sequential maximizing

Sequential and Cooperative Game

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix} \qquad B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix} \qquad A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & -1 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

The sequential game can be solved by sequential maximizing

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix} \qquad B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix} \qquad A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & -1 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

The sequential game can be solved by sequential maximizing

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix} \qquad A = \begin{bmatrix} 0.83 & 0.83 \\ 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix} \qquad B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ \hline 0.88 & -1 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

The sequential game can be solved by sequential maximizing

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix} \qquad A = \begin{bmatrix} 0.83 & 0.83 \\ 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix} \qquad B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & -1 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

The sequential game can be solved by sequential maximizing

sequential game cooperative game

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix} \qquad A = \begin{bmatrix} 0.83 \\ 0.88 \\ -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix} \qquad B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & -1 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

- The sequential game can be solved by sequential maximizing
- Sequential game feasible => equilibrium of the cooperative game
 - Predicting ideal behavior of other cars and play best response is Nash

sequential game cooperative game

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & 0.88 & 0.88 \\ -10 & -10 & -10 \end{bmatrix} \qquad A = \begin{bmatrix} 0.83 \\ 0.88 \\ -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix} \qquad B = \begin{bmatrix} 0.81 & 0.86 \\ 0.81 & -1 \\ 0.81 & 0.86 \end{bmatrix}$$

$$A = \begin{bmatrix} 0.83 & 0.83 & 0.83 \\ 0.88 & -1 & 0.88 \\ -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & 0.86 & -10 \\ 0.81 & -1 & -10 \\ 0.81 & 0.86 & -10 \end{bmatrix}$$

- The sequential game can be solved by sequential maximizing
- Sequential game feasible => equilibrium of the cooperative game
 - Predicting ideal behavior of other cars and play best response is Nash
- Cooperative game is feasible if there exists a feasible trajectory pair

$$A = \begin{bmatrix} 0.83 + 0.5 & -1 & 0.83 & 0.83 + 0.5 \\ 0.85 + 0.5 & -1 & -1 & 0.85 + 0.5 \\ 0.88 + 0.5 & 0.88 & -1 & 0.88 + 0.5 \\ -10 & -10 & -10 & -10 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.81 & -1 & 0.86 + 0.5 & -10 \\ 0.81 & -1 & -1 & -10 \\ 0.81 & 0.9 + 0.5 & -1 & -10 \\ 0.81 + 0.5 & 0.9 + 0.5 & 0.86 + 0.5 & -10 \end{bmatrix}$$

If there exists a blocking trajectory and the staying ahead reward is big enough, the Stackelberg equilibrium is a blocking trajectory pair

- If there exists a blocking trajectory and the staying ahead reward is big enough, the Stackelberg equilibrium is a blocking trajectory pair
- A blocking trajectory is not a Nash equilibrium (unless it is a Nash equilibrium of the cooperative game)

- If there exists a blocking trajectory and the staying ahead reward is big enough, the Stackelberg equilibrium is a blocking trajectory pair
- A blocking trajectory is not a Nash equilibrium (unless it is a Nash equilibrium of the cooperative game)

Stackelberg equilibrium seems best for all games

- If there exists a blocking trajectory and the staying ahead reward is big enough, the Stackelberg equilibrium is a blocking trajectory pair
- A blocking trajectory is not a Nash equilibrium (unless it is a Nash equilibrium of the cooperative game)

Stackelberg equilibrium seems best for all games

What is the resulting behavior of these games?

- Play game in a receding horizon fashion
 - Solve game + MPC apply first input repeat
- Trajectory pruning based on viability and discriminating kernel
 - Viab -> aggressive driver / Disc -> cautious driver
- ▶ 500 different initial conditions, each run 4.5 laps
 - Both cars start close to each other

	sequential game	cooperative game	blocking game
# of overtaking maneuvers	113	857	414
colliding time steps per lap	2.4	2.0	2.3

	sequential game	cooperative game	blocking game
# of overtaking maneuvers	113	857	414
colliding time steps per lap	2.4	2.0	2.3

	sequential game	cooperative game	blocking game
# of overtaking maneuvers	113	857	414
colliding time steps per lap	2.4	2.0	2.3

	sequential game	cooperative game	blocking game
# of overtaking maneuvers	113	857	414
colliding time steps per lap	2.4	2.0	2.3

	sequential game	cooperative game	blocking game
# of overtaking maneuvers	113	857	414
colliding time steps per lap	2.4	2.0	2.3

	sequential game	cooperative game	blocking game
# of overtaking maneuvers	113	857	414
colliding time steps per lap	2.4	2.0	2.3

How do the cars drive?

Experimental Results

blocking game - $N_S = 2$

Experimental Results

blocking game - $N_S = 2$

- We proposed a complet autonomous racing pipeline
 - Different behavior is seen for different viability kernels and games
- Interesting insights into behavior of non-cooperative decisions
 - Sequential maximization and leader-follower structure

- We proposed a complet autonomous racing pipeline
 - Different behavior is seen for different viability kernels and games
- Interesting insights into behavior of non-cooperative decisions
 - Sequential maximization and leader-follower structure

- We proposed a complet autonomous racing pipeline
 - Different behavior is seen for different viability kernels and games
- Interesting insights into behavior of non-cooperative decisions
 - Sequential maximization and leader-follower structure

- Reliable and real-time feasible games
 - Consider uncertainty in game formulation
 - Reinforcement learning-based terminal cost+constraints
 - High-performance implementation using GPU

- We proposed a complet autonomous racing pipeline
 - Different behavior is seen for different viability kernels and games
- Interesting insights into behavior of non-cooperative decisions
 - Sequential maximization and leader-follower structure

- Reliable and real-time feasible games
 - Consider uncertainty in game formulation
 - Reinforcement learning-based terminal cost+constraints
 - High-performance implementation using GPU
- Model-learning for MPC
 - Learning model correction can be massively improve performance $x_{k+1} = f(x_k, u_k) + \mu_{GP}(x_k, u_k)$

Questions

