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Improving depth estimation using map-based depth
priors

Vaishakh Patil1, Alexander Liniger1, Dengxin Dai1,2 and Luc Van Gool1,3

Abstract—Accurate scene depth is fundamental for robot scene
understanding as it adds spatial reasoning. However, accurate
scene depth often comes at the cost of expensive additional
depth sensors. In this article, we propose to use map-based
depth data as an additional input instead of expensive depth
sensors. Such an approach is especially appealing in autonomous
driving since map-based depth is commonly available from
high-definition maps. To validate this approach, we propose a
mapping method that works with common autonomous driving
datasets and allows for precise localization using a mix of GNSS-
INS and image-based techniques. Furthermore, we propose an
entirely learnable three-stage network that handles foreground-
background mismatches between the map-based prior depth and
the actual scene. Finally, we validate the performance of our
method in comparison to several baseline methods and SOTA
depth completion methods receiving map-based depth as an
input. Our method significantly outperforms these methods both
in quantitative and qualitative results. Moreover, our method
achieves better metric-scale predictions compared to image-only
approaches.

Index Terms—Deep Learning for Visual Perception, RGB-
D Perception, Sensor Fusion, Novel Deep Learning Methods,
Autonomous Vehicle Navigation,

I. INTRODUCTION

ACCURATE scene depth understanding is essential for
a variety of robotic applications such as path planning,

augmented reality, and autonomous driving. These robots have
to rely on engineered depth estimation systems as opposed to
humans’ depth assessment ability through their visual cortex.
Historically, robotic applications perceived depth measure-
ments through stereo cameras or active depth sensors like
LiDARs, Time-of-Flight (ToF) sensors, or structured light
cameras. Although these systems can generate reliable depth
maps using well-defined mathematical principles, they are
more expensive than RGB cameras with short to medium
operating range (<100m) and can have holes in depth maps. In
case of the popular mechanical spinning LiDARs, integration
is complex due to its bulkiness and rotating mechanism,
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Localize Query Predict
Fig. 1. Autonomous vehicles operate in an outdoor environment and are
often equipped with GNSS sensors and HD maps. Given the ability of such
a robotic platform to localize itself, it can query the HD map for a depth
prior. This prior depth information can then be fused with image information
to generate accurate depth maps of the scene.

and operation is restricted due to its fragility under adverse
weather conditions or vibrations. ToF cameras are often short-
range and cause erroneous depth measurement in multi-camera
setups [1]. Finally, estimating depth from a single camera is
an ill-posed problem since a single view of the scene can be
interpreted as a large number of different 3D scenes generating
ambiguous depth information. However, recent advancements
in deep learning have allowed for a massive leap in this
area [2], bringing practicality.

Motivation: Several robotic applications use depth infor-
mation to interact with the surrounding environment. This
demands that the estimated depth maps are causal and obtained
with minimal latency and high throughput. One of the feasible
solutions considering these objectives is to use prior data.
Previously, several methods in different robotic applications
have relied upon prior knowledge of the scene [3]–[5].
Likewise, we assert that depth estimation can benefit from
prior depth information, specifically from map-based depth
information. Moreover, various robotic applications require
performing repetitive tasks in the same environment mostly
consisting of large static regions. It is also possible to capture
and accumulate the 3D map of these static scene in advance.
Hence, mapping is an intuitive approach used in robotics
for tasks such as localization as the stored information can
be exploited during subsequent explorations. Similarly, depth
estimation methods can benefit from such map based prior
depth information to generate scale-aware, high quality depth
maps.

Application: Let us consider the case of autonomous vehi-
cles (AV). Traditionally, human drivers are known to use maps
to guide themselves to a location. Similar AVs also use maps
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but extend them with additional information which can assist
AVs; these maps are called High-Definition(HD) maps. HD
maps primarily contain detailed information of road elements
(road shape, marking, barriers, traffic signs) and the point
cloud of areas around the road. If the vehicle can localize
itself accurately in these maps, the point clouds can provide
the 3D context of the static scene over a large range. In this
work, we argue that this information can be used to enhance
the functionality of a monocular camera to estimate depth.
Given a precise visual and GNSS-based localization [6], [7]
we can use the 3D point cloud map information from this view
to help the depth estimation of the current image (Fig. 1).

Contribution: In this article, we propose to enhance the
traditional depth estimation from a monocular camera with
the help of a map-based prior depth. This problem is tackled
with a novel deep learning pipeline that fuses these previous
depth measurements of nearby scenes with the current depth
estimate. Our system is designed to handle dynamic objects in
the scene and misalignment in localization in an automated,
learnable fashion. Additionally, we show the advantages of
our method by comparing it to the SOTA method in the
depth completion realm, in the case only map-based depth
is available. Finally, we present an extensive quantitative and
qualitative evaluation of the proposed method along with a
thorough ablation study.

II. RELATED WORK

The field of depth estimation has been filled with a plethora
of methods. Each of these methods is designed for the specific
application of depth estimation. Given the breadth of this
area, we outline the methods designed for monocular images
relevant to our setup.

A. Learning depth from single image

The ambiguous task of learning depth from a single image
can be approached by learning. Here we will outline the works
related to predicting depth from a single RGB image. Saxena
et al. [8] were one of the earliest to popularize this idea.
Since then, several works have proposed to learn depth with
different settings: Garg et al. [9], and Godard et al. [10] used
images pairs, [11] used multiple overlapping images captured
from different viewpoints, [12] utilizes binaural sounds. [13]
utilized generative models and [14] used continuous 3D loss
function to learn the depth. For this setup, deep learning-
based methods were first proposed in [15]–[18], which use
supervision obtained from active sensors (ToF, LiDAR sen-
sors). Furthermore, methods were developed to learn directly
from stereo pairs [10] combined with direct supervision from
LiDAR sensors [19]. To avoid the dependency on expensive
Ground Truth (GT) depth, self-supervised methods became
popular, which use view synthesis or its variants as the supervi-
sory signal [20]–[24]. Despite the popularity of these methods,
they are often unstable to train, require hyperparameter tuning
and suffer from scale ambiguity.

B. Depth completion methods

Alongside the advancements in single image depth esti-
mation, it has been shown that additional depth information
can significantly improve depth performance. One such task
is depth completion, where the goal is to enhance sparse
depth data (i.e., from a LiDAR sensor) with image guid-
ance. The problem was first defined by the KITTI Depth
Completion Benchmark [25]. Since then, numerous methods
have been proposed, significantly increasing the quality of
the results [26]–[32]. This line of work has been further
extended for video data [33], sparse radar sensors [34], laser
range finder [35], [36]. Other works have shown that sparse
depth inputs from either SLAM or structure-from-motion
systems [37], [38] can improve depth predictions.

There are classical methods that make use of prior depth
information [39]–[42]. In contrast to our approach, these meth-
ods work by estimating the dense optical flow or 3D motion
between the current scene and the corresponding previous
scene. This information is used to warp the previous depth
information to the current scene. [40], [42] estimate depth
between two frames only by warping without accounting for
the changes. These methods cannot be applied to dynamic
scenes as they only account for small changes in depth or
in-plane motion. [39] warps the depth image from an RGB-
D image database to the current image by measuring optical
flow between both RGB images. The warped depths are then
optimized to estimate the depth of the current image. [41]
first computes the rigid regions between consecutive images
with optical flow. The new depth values are assigned from
previous depth maps by using photometric error between the
current and re-projected previous image, the estimated rigid
motion and the previous depth map.

Overall, accurate sparse depth measurements can signifi-
cantly boost the performance of image-based depth estimation.
In our work, we aid RGB images with map-based prior depth
leading to a similar conclusion.

III. DEPTH ESTIMATION USING MAP-BASED DEPTH PRIORS

As discussed in the Introduction I, depth estimation from
only a single image is ill-posed and suffers from several issues
such as scale consistency. One approach to solve these issues
is by fusing visual information with direct depth measurements
by a secondary sensor. However, adding such a sensor adds
a significant cost and increases energy consumption. In this
work, we exploit the fact that robots often operate in a prede-
fined limited operation space, i.e., geo-restricted autonomous
cars. Thus, we propose to replace expensive depth sensors with
map-based depth priors accessible as part of HD maps. Note
that we still need expensive sensors for the HD map generation
and supervision, but no additional sensors are required during
operation.

Designing such a system comes with two main challenges;
first, a HD map that stores depth data in a suitable format.
Second, a robust depth fusion network to deal with the
inconsistencies of the map depth data (foreground objects) and
the potentially sparse supervision.
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Fig. 2. Map query: Prior depth information is obtained through a query in
the map database followed by Perspective-n-Point based warping. The steps
of the pipeline are denoted in encircled bold numbers.

A. Depth prior map

In the context of autonomous driving, HD maps have
become a crucial building block. Modern HD maps for au-
tonomous driving have several components, from lane graph
information to 3D point cloud data of the surrounding. We
argue that this 3D data can also be used to improve depth
estimation. Even though 3D point cloud based HD maps
are commonly used for autonomous driving, they are rarely
publicly available. Thus, in this paper, we develop a simple
GNSS-INS referenced depth map, which can be applied to
public datasets that sufficiently cover a geo-restricted area.

There is no fixed standard for how a 3D data HD-map
should be structured, VarCity [43] for example, build a large
scale 3D-City model, and TomTom’s RoadDNA system rep-
resenting the 3D lateral and longitudinal view of the roadway.
However, we determined three main challenges when devel-
oping such a large-scale map.
Constructing a large-scale point cloud is complex. It requires
the accumulation and processing of multiple point clouds
captured by a depth sensor. Moreover, the size of the map
generated by naively accumulating individual point clouds can
get prohibitively large. Thus, efficient data management is
needed.
Updating the existing point cloud can be as challenging as
constructing it. The map should be set up such that new data
improves the map and replaces outdated information, while
the size of the resulting map should remain roughly constant.
Localization within the point cloud should be fast and precise.
This is challenging due to the unordered nature of the point
cloud. It can be addressed with additional metadata such as
3D point descriptors, GNSS referencing, and vision-based
appearance information.

In this work, we propose a simple map for depth data that
works with existing autonomous driving datasets. Therefore,
instead of a global accumulation, we perform a temporal
and spatial local accumulation of the LiDAR point cloud
around each keyframe of the dataset. Thus, each local point
cloud is registered to the ECEF (Earth-centered, Earth-Fixed)

reference system. Since we can only rely on visual localization
(no LiDAR at test time), we store the front-facing image
along with the local point cloud. Thus, our HD-map is a
list of locally accumulated 3D point clouds Dmap, projected
and clipped within the camera’s field of view to reduce
the size requirements. Additionally, we store the front-facing
image Imap and the GNSS-INS location Locmap =(latmap,
longmap), i.e. latitude and longitude information. This map
setup allows for a straightforward generation since the point
cloud accumulation is only done locally, avoiding size and
global alignment issues. Updating the map is trivial as new
elements can be simply added to the list, and old locally close
entries can be deleted. Finally, for localization, we can use
GNSS and image-based tools.

We acknowledge that our method is still rather simple for
map-based vehicle localization, and it may not represent the
state of the arts for localization. However, the focus of this
work is to show that our depth estimation method is able
to benefit from having prior map data and can do so even
without using the most sophisticated localization methods.
Developing and using more sophisticated localization methods
is orthogonal to this work.

Map query: Localization within the map and retrieving the
prior depth is fundamental for our method. Our approach uses
a mix of GNSS and vision-based localization, and the full
approach is shown in Fig. 2 and summarized in Algo. 1.
First, we use the current GNSS location Loccurr=(latcurr,
longcurr) to retrieve the n closest elements in the map in
terms of the euclidean distance. Next, we use an image-
based localization approach to find the relative transformation
between the retrieved map elements image Imap and the
current image Icurr. Following the recent advances in deep
learning-based feature matching, we employ such methods
(SuperGlue [44] in our case) to find robust correspondences
between Icurr and Imap. Given the 2D correspondences and
the corresponding 3D points given by Dmap, we can estimate
a relative pose Tmap→curr using the Perspective-n-Point (PnP)
algorithm. Now, using the transformation and the camera
matrix K, we can warp the map depth to the current frame
as,

D̂curr = KTmap→currDmapK
−1pmap , (1)

where pmap = (u, v, 1) are homogeneous image coordinates,
and a hat indicates a warped map-based prior depth. Finally,
we aggregate the n warped prior depth images, excluding
views with less than τ points in the warped prior depth. For
the remaining sections we do drop the curr subscript for
readability.

B. Depth fusion network

The goal of our depth fusion network is to use the warped
prior depth D̂ to improve the depth estimation from an image
I . Thus, our fusion problem is similar to the depth completion
problem but with different key challenges. From a high-level
perspective, we have an RGB image I(u, v) where (u, v)
indicates the pixel location, as well as a sparse depth input
D̂(u, v). Finally, we have the ground truth depth Dgt(u, v),



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

+

Initial Estimation

Image Initial Depth Est.

Warped Prior Depth

Refinement

Filtering Module

E

D

Predicted Depth

E D

Filtering

E

Fig. 3. The complete pipeline consist of a “Three Stage Prior Depth Fusion Network”. The stages are labeled at the right-top corner of each block. The
notations are as follows,

⊕
: concatenation, E: Encoder, D: Decoder.

Algorithm 1 Get Depth Priors
1: function GENERATEDEPTHPRIORS(N, τ )
2: Lcurr← Current GNSS location.
3: Lmap ← List of all Map locations.
4: Didx,Lidx,pt← {}
5: idx← SORT(argmin ‖Lcurr − Lmap‖2)
6: for TOPELEMENTS(idx,N)→ Lmap do
7: T← PERSPECTIVENPOINT(Icurr, I

idx
map,D

idx
map)

8: Dwarped ← WARPDEPTH(Dmap,T)
9: if no. of points in Dwarped ≥ τ then

10: Lidx ← Lmap

11: Didx ← Dw

12: for each id in Lidx do
13: pt← PROJECT(Didx

id ,K−1)

14: D̂curr ← BACKPROJECT(pt,K)
15: return D̂curr

which is sparse but sufficiently dense to give meaningful
supervision for the network. Given these ingredients, the goal
is to learn a deep neural network fθ(I, D̂) that maps the
RGB image and warped depth image to a dense depth image
D̄(u, v). In our setting all I , D̂ and D̄ have all the same
resolution H ×W and D̄ > 0. We train our neural network
in a supervised fashion,

min
θ
LM (Dgt, fθ(I, D̄)) , (2)

where the loss LM is a masked loss, which considers the
binary mask M(u, v) of the GT depth.

Different from the standard depth completion task, our depth
estimation with map priors has several additional challenges.
First, the depth prior is potentially wrong: the depth prior does
not contain the current foreground objects, potentially contains
foreground objects not present in the current scene, and small
objects may be misaligned. Thus, the network needs to learn
where to trust the map-based depth prior and where not.
Second, given that the GT depth is sparse and the input prior
gives incorrect cues, supervision becomes challenging. Thus,
we need to include additional supervision signals allowing us
to predict a high-quality dense depth. In the next section, we
will discuss how we tackled these two challenges.

C. Three stage depth fusion network

To deal with issues of the map-based prior depth input, we
propose a three-stage network (Fig. 3) consisting of an initial

monocular estimation stage, a second filtering stage that adds
the depth prior, and a final refinement stage.
Initial estimation: The initial estimation stage is a monocular
depth estimation method that predicts a depth map D̄init

using the current image and is directly supervised by the GT
depth. This initial estimate gives an anchor for what depth
information can be extracted from the image. This anchor can
be used in the second stage to decide where to trust the map-
based depth prior.

Max
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Fig. 4. The warped map depth often comes with several issues. To handle
this, we propose two possible filtering modules: (A) Classical Filtering, (B)
End-to-End Filtering. The output of this stage is forwarded to the refinement
module as shown in Fig. 3. The notations are as follows,

⊕
: concatenation,⊗

: element-wise multiplication, E: Encoder, D: Decoder.

Filtering stage: To deal with the issues in the map-based
depth prior, we propose to use a filtering stage. We design
two possible approaches for this stage (Fig. 4); both have the
same goal, combining the depth map from the initial stage and
the map-based prior depth. Therefore, two masks have to be
estimated (Fig. 5), one for each of the depth maps. The first
approach is a baseline method that is based on classical ideas,
which uses SID filtering [45] to determine where to use the
map-based depth prior, given the two depth maps as an input.
The SID filter is used to compute a threshold to eliminate
points from the prior depth map. More precisely, we compute
the threshold as

δ = exp

(
d log(βα )

K
+ log(α)

)
, (3)
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Fig. 5. The figure shows the following overlayed on the image: (A), filtered
mask using classical filtering, and (B), generated mask using end-to-end
filtering. In (1) and (4), the warped prior depth points projected on dynamic
objects have been discarded. In (2) and (3), the warped prior depth points are
retained and the initial predicted depth is given a lower weight.

where d is the prior depth at a specific pixel, and α and β
are hyperparameters. Given this threshold, we remove points
from the prior depth map if |Dmap−D̄init| ≥ δ. This approach
allows deciding where to trust the prior depth given the initial
stage depth anchor. However, the initial stage depth D̄init

is not perfect as it often fails at edges in the image. Thus,
we generate an edge map from the image, and we further
process the edge map with a 3×3 max pool filter to make the
edge regions more homogeneous and reduce noise. Finally, we
threshold the edge map to generate a mask for the initial stage
depth. The two masked depth maps are then concatenated and
further processed by the refinement stage.

The second filtering approach is formulated as an end-
to-end trainable selection network. Motivated by the issue
that finding the hyperparameters for the classical approach is
cumbersome and that there are more effects at play than the
two we considered, we designed a learnable filtering stage.
Therefore, we use two soft-attention masks that are learned
using a small encoder-decoder-style network. The network gets
the image, the depth prior, and the initial stage depth as an
input and predicts two independent output masks. The masks
have no additional supervision and are only trained through
the final loss of the network.
Refinement stage: The final stage takes image and two
masked depth maps as an input. The refinement network is
a mid-level fusion network, with an image and depth decoder
(see Fig. 3). The image encoder processes the input image,
and the depth encoder the masked and concatenated depth
maps. We perform a deep fusion of the two encoder output
feature maps, inspired by [46]. Finally, the decoder processes
the fused feature maps and predicts the final depth D̄.

D. Dealing with weak supervision

As discussed in Sec. III-B, we train our network in a super-
vised fashion using a masked regression loss. Give the binary
depth mask M(u, v), representing non-zero depth values in
the GT we compute our loss as follows,

LM,p = ‖M ◦Dgt −M ◦ D̄‖p, (4)

where ‖ · ‖p indicates an element-wise p-norm. We use the
1-norm (p = 1), other common norms would be the 2-norm
or the Huber loss.

Training only with this loss in the case of relative sparse
LiDAR ground truth can cause significant artifacts due to the

non-uniform supervision by the layered GT. Specifically, the
network can learn to only predict the depth at the horizontal
scanning lines of the LiDAR. This results in the dense output
having a layered-like shape. To avoid this local minimum and
generate a reasonable dense depth, we employ two techniques.
The first is an edge-aware smoothness loss [47]. The loss
penalizes gradients in the depth map but scales the loss
according to the image gradient since depth discontinuities
often arise near image gradients.

Lsmooth =
∣∣∣∂xD̂∗∣∣∣ e−|∂xI| + ∣∣∣∂yD̂∗∣∣∣ e−|∂yI| (5)

where D̂∗, represents the mean normalized inverse depth,
which is used to avoid shrinkage of the depth values.

However, this smoothness loss cannot fully compensate for
the strong gradients from the supervised loss. Thus, we add a
GAN-based loss, where the discriminator forces the network
to produce realistic depth maps. The idea is that the discrim-
inator recognizes LiDAR-like layered depth outputs as fake
examples, forcing the generator to avoid this local minimum.
In this paper, we use the Least Square GAN (LSGAN) [48]
formulation with a PatchGAN [49] discriminator. We consider
LSGAN since it forces samples to be closer to the real data,
unlike standard GAN-based loss where samples suffer from
vanishing gradients. The PatchGAN [49] discriminator is used
to give more local feedback to the generator. The GAN-based
training is formulated as follows, the generator G produces a
depth map D̄ given an image I and a sparse depth D̂, and we
condition the discriminator D on the nearest map image Imap
and the densified depth map Dmap,d. Note that we densify the
sparse depth map Dmap using a depth completion network,
which is trained using data from the map itself to avoid
layering issues in the true examples. Thus, the discriminator
has to learn to differentiate (I , D̄) and (Imap, Dmap,d) tuples.
Thus, the LSGAN objective can be formulated as,

LD
GAN =

1

2
Ex∼pdata(x)

[
(D(x|y)− b)2

]
+

1

2
Ez∼pz(z)

[
(D(G(z|y))− a)2

]
(6)

LG
GAN =

1

2
Ez∼pz(z)

[
(D(G(z|y))− c)2

]
(7)

where x represents the pair (Imap, Dmap,d), and z is the
predicted depth. Additionally, a are the labels of the fake
sample, b the labels of the real samples, and c the value that
the generator wants the discriminator to believe for fake data.
We set a = 0, b = 1, and c = b to emphasize the realism of
the predicted depth.

Finally, the objective for the generator, our depth fusion
network, is given by

Ltotal = LM,1 + λsLsmooth + λGANLG
GAN , (8)

which is a combination of the sparse GT loss, edge-aware
smoothness loss, and the GAN loss, which are traded of using
the hyperparameters λs = 0.001 and λGAN = 0.01.
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Image RGB RGB+GT50 RGB+WD RGB+WD+EF

Fig. 6. The qualitative comparison of our method with baseline methods is shown in this figure. We can observe that RGB+WD+EF produces sharper
and better quality depth maps compared to the other baselines. The method also works in challenging conditions like uneven lighting, lens flares. We can also
observe that there are certain artifacts generated in RGB and RGB+WD. This is due to the layered depth pattern in the GT LiDAR depth and also the input
in the latter case. Employing a filtering module along with the GAN training helps to alleviate this problem.

IV. EXPERIMENTS

A. Dataset preparation

The experiments are conducted using the Oxford Radar
RobotCar dataset [50], [51]. The dataset contains 32 traversals
(routs) of Oxford, UK, equivalent to 280 km of driving. Each
route covers (almost) the same streets/area in Oxford, thus the
dataset is well suited for our map-based method. Out of these
routes, we use one complete route as a “map run”. Further,
we select ten routes for training and three routes for testing.
The data capture vehicle is mounted with six cameras, two
3D LiDARs, two 2D LiDARs, and a GNSS/INS receiver. We
utilize the data from the front-facing camera and 3D LiDARs.
We further downsample routes by selecting every 5th frame
for training and every 50th frame for testing. The LiDAR
data is provided in the form of non-motion-compensated time
series data with associated timestamps. We extract the point
cloud limited to the camera’s field of view and apply motion
compensation to it. We use standard depth estimation metrics
for evaluation [26], [29].

B. Implementation details

All the encoders in the initial estimation and refinement
stage are a ResNet-18 [52], with the first convolutional layer
for the depth encoder changed to deal with the two-channel
input. The decoders are similar to [26]. In the classical

filtering approach we use α= 5 and β= 18. For the end-to-end
learned soft attention masks, we use a lightweight SegNet [53]
architecture.

In the map query stage, we use SuperGlue [44] to estimated
2D keypoint matches. We further filter the correspondences
using Random Sample Consensus (RANSAC) [54], in the PnP
when estimating the relative transformation. Finally, we dilate
the sparse depth map using a 5×5 kernel to get the depth of
all key points in the PnP. If not stated otherwise, we use only
the closest image N = 1 to generate the prior map depth D̂.

C. Comparison with baselines

In this section, we discuss the qualitative and quantitative
results of our method and compare it to baselines and SOTA
methods. We show the effectiveness of our approach by
achieving the best results amongst compared methods.

We consider a single-stage RGB only method as a minimum
baseline (only the initial estimation state in our network)
and build all subsequent experiments on top of it as shown
in Tab. I. We improve this baseline by including the raw
depth Dmap from the closest map frame (Baseline RGB+D).
The network is a simple one-stage depth completion network,
which concatenates the depth in the input. To show that align-
ing the image is important, we train the same model but with
the warped prior depth D̂ as an input (Baseline RGB+WD).
All our baseline networks use the full loss, including the GAN
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TABLE I
SUMMARY OF SINGLE DEPTH ESTIMATION/COMPLETION. D:

RETRIEVED DEPTH BASED ON LOCATION. WD: WARPED PRIOR DEPTH,
CF: CLASSICAL FILTERING, EF: END-TO-END FILTERING

Method ↓ RMSE ↓ MAE ↓ ARD ↑ δ1 ↑ δ2 ↑ δ3

Baseline methods (B)

RGB(B) 4.6339 2.1294 0.2185 0.8596 0.9169 0.9397
RGB(B)+D 7.0891 4.2832 0.5874 0.5179 0.7762 0.8586
RGB(B)+WD 4.5171 2.0846 0.2122 0.8621 0.9178 0.9401

SOTA Depth Completion methods

UncertNet [28] 5.9882 3.2497 0.2843 0.7193 0.8687 0.9167
Sparse2dense [26] 5.2315 2.5814 0.2528 0.7977 0.8949 0.9272
Self Sup.DC [29] 5.0209 2.4677 0.2365 0.8100 0.9030 0.9324
PENet [30] 4.6596 2.2223 0.2236 0.8356 0.9123 0.9381
CSPN [27] 4.6025 2.1403 0.2152 0.8424 0.9150 0.9381

Our method (RGB+WD) with different filtering

Our (CF) 4.0549 1.7045 0.1893 0.8827 0.9280 0.9425
Our (EF) 3.8381 1.4518 0.1749 0.8983 0.9318 0.9440

loss as discussed in Section III-D. For comparison, we also
train several existing SOTA depth completion methods, which
receive the warped map depth as an input. Finally, we show
the results of our 3-stage network, with both the classical and
end-to-end filtering.

We observe that using the not-aligned map depth directly
without warping leads to a degradation of the predictions
compared to the RGB baseline. However, using the aligned
depth with the same network boosts the performance by -
0.12m RMSE compared with the RGB baseline. In fact,
our baseline network with the warped prior depth as input
performs better than all the SOTA depth completion networks
with the same inputs. We assume that the better performance
is due to the GAN-loss, which helps in the sparse supervision
setting. Finally, our 3-stage networks achieve a significant
boost in performance compared to the other networks. Already
our classical filtering stage results in a 0.46m improvement
in RMSE, and learning the filtering gives another 0.22m
improvement. The qualitative results are shown in Fig. 6.

D. Ablation study

In this section, we perform ablations on our pipeline. We
start with an RGB-only approach and add warped prior depth
and our 3-stage network while testing each case with and
without the proposed loss functions. In Tab. II, we observe
that the GAN-based loss helps to improve the performance in
all mentioned cases. Furthermore, it can be observed that the
addition of the noisy warped depth in a single-stage network
can improve the performance. Finally, adding the end-to-end
filtering and refinement stage further boosts performance sig-
nificantly. We also investigate and conclude that if more than
one prior map depth is used to compute D̂, the performance
benefits are marginal.

We also evaluate how sparse GT depth points in the input of
a single-stage network help. The GT depth points are randomly
sampled following [26]. We can see that our map-based depth
is roughly worth 50 GT points and that, as expected, more GT
points can further improve the performance.

TABLE II
SUMMARY OF SINGLE DEPTH ESTIMATION/COMPLETION. GT(N): N

GROUND TRUTH SPARSE POINTS, WD: WARPED PRIOR DEPTH, EF:
3-STAGE NETWORK WITH E2E FILTERING, +(N)F: USE OF N ADDITIONAL

MAP FRAMES. METHODS BUILD ON TOP OF EACH OTHER.

Input L1+
LS

LGAN ↓ RMSE ↓ ARD ↑ δ1

RGB X 4.7169 0.2247 0.8533
X X 4.6339 0.2185 0.8596

+WD X 4.6405 0.2192 0.8597
X X 4.5171 0.2122 0.8621

+EF X 3.8506 0.1891 0.8865
X X 3.8381 0.1749 0.8983

+3F X X 3.7936 0.1720 0.8995
+5F X X 3.7702 0.1693 0.9050

RGB+GT50 X 3.8426 0.1757 0.8930
RGB+GT1000 X 2.9462 0.1599 0.9185

R
G

B

R
G

B
+

W
D

+
E
F

GT GT(0.1m, 0.1m) (0.1m, 0.1m)

(80.0m, 80.0m) (80.0m, 80.0m)

maxmin

Fig. 7. Confusion matrix comparing RGB-only vs GT depth and
RGB+WD+EF vs GT depth. The spread of the diagonal shows that
RGB+WD+EF performs significantly better than RGB-only for larger depth
ranges.

Scale of predicted depth. One of the reasons for using
prior depth data is to generate the depth maps to the absolute
metric scale. Here we can evaluate the predicted depth using
a confusion matrix (Fig 7). The spread of the diagonal of
the matrix provides an intuition of uncertainty in the metric
scale prediction. We can observe that in the case of RGB-only
based predictions, the spread of the diagonal funnels out and
disappears as we move towards larger depth values, whereas
our proposed method performs significantly better for larger
depth ranges.

Effectiveness of method in Depth Completion. We also
test our approach in a depth completion setup for completeness
and fairness. Here, the input depth is generated by randomly
sampling 1000 GT depth points, i.e. a density of less than 33%.
We observe that SOTA depth completion methods outperforms
our method. The method [30] provides the best results in this
setup followed by [28] and [29]. A drop of ∼0.6m in the
RMSE metric, ∼0.05m in terms of ARD and ∼3% in δ1 is
expected as our method is designed to be robust against noisy
depth inputs as explained in Sec. IV-C. Here, our filtering
module becomes largely ineffective leaving the performance
solely to the depth prediction networks. We believe that
adapting our pipeline to improved depth prediction networks
will substantially improve the performance in this setting.

V. CONCLUSION
In this work, we introduce a novel method to enhance

the monocular depth estimation method with the help of a
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map-based prior depth. We propose a simple map generation
method that can be added to existing datasets and allows us to
show the advantages of using map-based depth information.
We observe that just including warped prior depth in the input
along with the image provides a considerable performance im-
provement over an image-only method. These improvements
are further confirmed by our proposed 3-stage depth fusion
network. The pipeline robustly handles dynamic objects in
the scene as well as misalignment in localization, generating
SOTA results. Our method is suitable as a starting point
for monocular camera-based depth prediction algorithms to
further improve the results by utilizing HD-map information.
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