ETH zürich

IDSC

Pushing the Limits of Friction: A Story of Model Mismatch

Dr. Alexander Liniger Opportunities and Challenges with Autonomous Racing – ICRA 2021

Motivation

- How can we design a motion planning and control strategy that pushes an autonomous racecar to the limit
- Model Predictive Control is a flexible and efficient method for this task
- Accurate but simple models are fundamental
 - Accurate to plan precise motion
 - Simple to keep computation in check

Motivation

- Model accuracy is fundamental
 - Same controller, same model structure, different model parameters

@IfA ETH Zurich 2013

@IfA ETH Zurich 2015

An accurate vehicle model is crucial for high-performance control

CVF /// Alex Liniger - ICRA 2021

- Progress maximizing path following MPC (MPCC or MPC-Curv)
- Follow the reference line while maximizing the progress
 - NMPC with 4th order Runge Kutta discretized model
 - Prediction horizon of ~2s

$$\min_{\mathbf{X},\mathbf{U}} \quad \sum_{t=0}^{T} j_{\text{MPC}}(\mathbf{x}_t, \mathbf{u}_t)$$
s.t.
$$\mathbf{x}_0 = \mathbf{\hat{x}}$$

$$\mathbf{x}_{t+1} = f_t^d(\mathbf{x}_t, \mathbf{u}_t)$$

$$\mathbf{x}_t \in \mathcal{X}_{\text{Track}}, \quad \mathbf{x}_t \in \mathcal{X}_{\text{FE}}$$

$$\mathbf{a}_t \in \mathcal{A}, \quad t = 0, ..., T$$

max progress rate + min regularizers
discretized curvilinear bicycle model
track, friction ellipse and action constraints

- Progress maximizing path following MPC (MPCC or MPC-Curv)
- Follow the reference line while maximizing the progress
 - NMPC with 4th order Runge Kutta discretized model
 - Prediction horizon of ~2s

 $j_{\text{MPC}}(\mathbf{x}, \mathbf{u}) = -\text{progress rate} + \text{regularizers}$ drive as fast follow path as possible input + slip angle reg

max progress rate + min regularizers
discretized dynamic bicycle model
track, friction ellipse and action constraints

- Progress maximizing path following MPC (MPCC or MPC-Curv)
- Follow the reference line while maximizing the progress
 - NMPC with 4th order Runge Kutta discretized model Ο
 - Prediction horizon of ~2s Ο

$$\min_{\mathbf{X},\mathbf{U}} \sum_{t=0}^{T} j_{\text{MPC}}(\mathbf{x}_t, \mathbf{u}_t)$$
s.t.
$$\mathbf{x}_0 = \hat{\mathbf{x}}$$

$$\mathbf{x}_{t+1} = f_t^d(\mathbf{x}_t, \mathbf{u}_t)$$

$$\mathbf{x}_t \in \mathcal{X}_{\text{Track}}, \quad \mathbf{x}_t \in \mathcal{X}_{\text{FE}}$$

$$\mathbf{a}_t \in \mathcal{A}, \quad t = 0, ..., T$$

max progress rate + min regularizers nic bicycle model discretized d se and action constraints track, friction ell

- Progress maximizing path following MPC (MPCC or MPC-Curv)
- Follow the reference line while maximizing the progress
 - NMPC with 4th order Runge Kutta discretized model
 - Prediction horizon of ~2s

$$\min_{\mathbf{X},\mathbf{U}} \sum_{t=0}^{T} j_{\text{MPC}}(\mathbf{x}_t, \mathbf{u}_t)$$
s.t.
$$\mathbf{x}_0 = \hat{\mathbf{x}}$$

$$\mathbf{x}_{t+1} = f_t^d(\mathbf{x}_t, \mathbf{u}_t)$$

$$\mathbf{x}_t \in \mathcal{X}_{\text{Track}}, \quad \mathbf{x}_t \in \mathcal{X}_{\text{FE}}$$

$$\mathbf{a}_t \in \mathcal{A}, \quad t = 0, ..., T$$

max progress rate + min regularizers discretized dynamic bicycle model track, friction ellipse and action constraints

Dynamic Bicyle Model - Curvilinear

$$\dot{s} = \frac{v_x \cos \mu - v_y \sin \mu}{1 - n\kappa(s)}$$
$$\dot{n} = v_x \sin \mu + v_y \cos \mu$$
$$\dot{\mu} = r - \kappa(s)\dot{s}$$
$$\dot{v}_x = \frac{1}{m}(F_x - F_{y,F} \sin \delta + mv_y r)$$
$$\dot{v}_y = \frac{1}{m}(F_{y,R} + F_{y,F} \cos \delta - mv_x r)$$
$$\dot{r} = \frac{1}{I_z}(F_{y,F} l_F \cos \delta - F_{y,R} l_R + M_{tv})$$
$$\dot{\delta} = \Delta \delta$$
$$\dot{T} = \Delta T$$

Dynamic Bicyle Model - Curvilinear

$$\begin{split} \dot{s} &= \frac{v_x \cos \mu - v_y \sin \mu}{1 - n\kappa(s)} \\ \dot{n} &= v_x \sin \mu + v_y \cos \mu \\ \dot{\mu} &= r - \kappa(s) \dot{s} \\ \dot{v}_x &= \frac{1}{m} (F_x - F_{y,F} \sin \delta + mv_y r) \\ \dot{v}_y &= \frac{1}{m} (F_{y,R} + F_{y,F} \cos \delta - mv_x r) \\ \dot{r} &= \frac{1}{I_z} (F_{y,F} l_F \cos \delta - F_{y,R} l_R + M_{tv}) \\ \dot{\delta} &= \Delta \delta \\ \dot{T} &= \Delta T \end{split}$$

Dynamic Bicyle Model - Contouring

$$\begin{split} \dot{X} &= v_x \cos \varphi - v_y \sin \varphi \\ \dot{Y} &= v_x \sin \varphi + v_y \cos \varphi \\ \dot{\varphi} &= r \\ \dot{v}_x &= \frac{1}{m} (F_x - F_{y,F} \sin \delta + m v_y r) \\ \dot{v}_y &= \frac{1}{m} (F_{y,R} + F_{y,F} \cos \delta - m v_x r) \\ \dot{r} &= \frac{1}{I_z} (F_{y,F} l_F \cos \delta - F_{y,R} l_R + M_{tv}) \\ \dot{s} &= v_s \\ \dot{\delta} &= \Delta \delta \\ \dot{T} &= \Delta T \\ \dot{v}_s &= \Delta v_s \end{split}$$

Model Mismatch

- Error between predicted next state and actual realization
- Easy to compute based on historical data
- How can we reduce the model mismatch

Learn a correction model using Gaussian Processes "Learning-based Model Predictive Control for Autonomous Racing", Kabzan et. Al.

Make the car behave like the prediction model "A Holistic Motion Planning and Control Solution to Challenge a Professional Racecar Driver", Srinivasan et. Al.

Model Correction

• Improve model using **sparse** Gaussian process

$$\mathbf{x}_{t+1} = f_t^d(\mathbf{x}_t, \mathbf{u}_t) + \mathbf{B}_d \left(\frac{d(\mathbf{z}_t)}{\mathbf{p}_t} + \mathbf{w}_t \right)$$
physical selection GP noise model matrix

• Five features for error prediction

$$z = [v_x, v_y, r, \delta, T] \qquad z = [v_x, v_y, r, \delta + 0.5T_s\Delta\delta, T + 0.5T_s\Delta T]$$

- GP estimates errors in the three velocities v_x , v_y , and r
- Set selection matrix correct only velocity states $\mathbf{B}_d = [\mathbf{0}, \mathbf{I}, \mathbf{0}]^T$

Gaussian Process MPC

- How to use the sparse GP corrected model?
- Use mean prediction in the model constraint (sparse GP for tractability)

 $\mathbf{x}_{t+1} = f_t^d(\mathbf{x}_t, \mathbf{u}_t) + \mathbf{B}_d \mathbb{E}[d(\mathbf{z}_t)]$

• Use variance prediction and linearized dynamics for constraint tightening

Gaussian Process Online Learning

- GP is a non-parametric technique: Explicitly requires data points to make prediction
- Data selection to limit computation effort
- Variance as a measure of informativeness

$$\gamma_i = k^a_{\mathbf{z}_i \mathbf{z}_i} - \mathbf{k}^a_{\mathbf{z}_i \mathbf{Z}_{\backslash i}} (\mathbf{K}^a_{\mathbf{Z}_{\backslash i} \mathbf{Z}_{\backslash i}} + \mathbf{I}\lambda)^{-1} \mathbf{k}^a_{\mathbf{Z}_{\backslash i} \mathbf{z}_i}$$

- Adaptive outlier removal
 - o Prevents sudden changes of GP
 - o Improve robustness of adaptive controller

1st Lap: Data collection with nominal controller

The learning-based controller is activated after the 2nd lap

Successive improvement of lap times is observed

Learning MPC - Results

- Model learning reduces lap time by 12%
- Error with nominal model increases with increasing performance/speed
- Error with corrected model remains approximately constant

Lap	Time [s]	$\ \mathbf{e}_{nom}\ $	$\ \mathbf{e}_{\mathrm{GP}}\ $	$\ a\ _{\max}$ [g]
1	20.19	0.16	-	1.52
2	20.29	0.18	-	1.49
3-	-19.16	0.19	0.15	$- \bar{2}.0\bar{5}$
4	18.80	0.23	0.15	2.01
5	18.47	0.23	0.16	2.02
6	18.44	0.24	0.15	2.00
7	17.98	0.23	0.15	1.82
8	18.47	0.24	0.17	2.15
9	18.25	0.24	0.16	2.10

Model Matching using Low-Level Control

- Make the MPC model more accurate using model learning
- Make the real car behave more like the MPC model using low-level control
- Use the 4 independent wheel hub motors to reduce model mismatch

Model Matching using Low-Level Control

- Make the MPC model more accurate using ML
- Make the real car behave like the MPC model using low-level control
- Use the 4 independent wheel hub motors to reduce model mismatch

Model Matching using Low-Level Control

- Make the MPC model more accurate using ML
- Make the real car behave like the MPC model using low-level control
- Use the 4 independent wheel hub motors to reduce model mismatch
- Holistic design from high level trajectory planning to low level control

Comparison to Human Driver

- Not 100% fair, top speed limit (17m/s) for MPC, but 70kg lighter car
- Experienced Formula Student driver

Comparison to Human Driver

- Not 100% fair, top speed limit (17m/s) for MPC, but 70kg lighter car
- Experienced Formula Student driver

ETH zürich

CVF //// Alex Liniger - ICRA 2021

Conclusion

- Final Remarks
 - Highlighted importance of model mismatch for autonomous racing
 - Proposed two dual approaches to solve the model mismatch problem
 - Both methods achieve lateral accelerations of 2g
 - Matching the performance of a top human driver
- Future Work
 - Can we combine the two methods to get the best of both worlds

Thanks

- Collaborators
 - Juraj Kabzan
 - o José L Vázquez
 - Marius Brühlmeier
 - Sirish Srinivasan
 - Sebastian Nicolas Giles
 - Dr. Lukas Hewing
 - Dr. Alisa Rupenyan
 - Prof. Melanie Zeilinger
 - Prof. John Lygeros

• AMZ

- Team 2018
- Team 2019
- Team 2020

