
Autonomous Racing by
Model Predictive Contouring Control

Institut für Automatik

Automatic Control Laboratory

Alexander Liniger

Alexander Domahidi, John Lygeros, Manfred Morari

Berkeley April 2015

Autonomous Driving
‣ DARPA Grand & Urban Challenge
‣ Google: >1.1 Mio km driven as of 4/14
‣ Tesla: >90% autonomous in 2016
‣ Mercedes: autonomous E & S-class
‣ BMW: autonomous drift with 235i
‣ ... and many others.

2

Autonomous Racing
‣ Autonomous Racing Audi TTS (Stanford University): 

3
No online path planning / obstacle avoidance / overtaking

ORCA Autonomous Racing

4Goal: Autonomous racing with obstacle avoidance

Outline
‣ Introduction
‣ Hardware Setup
‣ Car Modeling
‣ Model Predictive Contouring Control
‣ Obstacle Avoidance
‣ Solution Approach
‣ Results
‣ Current/Future Work

5

The ORCA Race Car Setup
‣ Built by ETH students from

standard components using 
Kyosho dnano 1:43 RC cars 

‣ Multiple control boards with RF
connection to embedded car

‣ Embedded board inside the car:
• ARM M4 microcontroller
• Gyro and accelerometer
• H-bridges for motors
• Voltage & current measurement
• Comms (Bluetooth)

6

http://control.ee.ethz.ch/~racing/

http://control.ee.ethz.ch/~racing/

Camera System

7

‣ Infrared based vision system
‣ PointGrey Flea3

‣ 100 fps
‣ resolution ~3.5mm

‣ 7 unique marker patterns

Outline
‣ Introduction
‣ Hardware Setup
‣ Car Modeling
‣ Model Predictive Contouring Control
‣ Obstacle Avoidance
‣ Solution Approach
‣ Results
‣ Current/Future Work

8

Car Model

9

Fry(αr)

Ffy(αf)

vy ω vx

αr

αf

δ

Frx(d)

lf

lr

X

Y
φ

‣ Bicycle model with generic tire forces

Ẋ = vx cos(�)� vy sin(�)

Ẏ = vx sin(�) + vy cos(�)

�̇ = �

v̇x =
1

m
(Fr,x � Ff ,y sin � +mvy�)

v̇y =
1

m
(Fr,y + Ff ,y cos � �mvx�)

�̇ =
1

Iz
(Ff ,y lf cos � � Fr,y lr)

‣ Pacejka’s “magic formula”

‣ Car inputs: duty cycle for DC motor d, steering angle δ
‣ Coefficients identified in various experiments

Tire Force Model

10

−1 −0.5 0 0.5 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

αr

F ry
 [N

]

Ff ,y = Df sin(Cf arctan(Bf �f))

�f = � arctan

�
�lf + vy

vx

�
+ �

Fr,y = Dr sin(Cr arctan(Br�r))

�r = arctan

�
�lr � vy

vx

�

Fr,x = (Cm1 � Cm2vx)d � Cr � Cdv
2
x

non-expert
human
driver’s model

important for racing

Outline
‣ Introduction
‣ Hardware Setup
‣ Car Modeling
‣ Model Predictive Contouring Control
‣ Obstacle Avoidance
‣ Solution Approach
‣ Results
‣ Current/Future Work

11

Path Parameterization
‣ Introduce variable denoting the normalized arc length of path:

‣ Write discrete-time dynamics for arc length:

‣ is (constrained) input
12

s � [0, 1]

s = 0

s = 0.25

s = 0.5
s = 0.75

s = 1.0

sk+1 = sk + vk , vk � 0

vk

Minimum Time Objective
‣ maximize travelled arc in N time steps minimize time to travel 

(assuming)

13

s0

s1

s2

�

. . .
sk

sN

. .
.

sN
sN < 1

s̃ =

QE\MQM^I sN

WYFNIGX�XS s0 = s̃

sk+1 = sk + vk , k = 0, . . . , N � 1
0 � vk� v̄

QE\MQM^I sN

WYFNIGX�XS s0 = 0

sk+1 = sk + vk , k = 0, . . . , N � 1
0 � vk� v̄

QE\MQM^I sN

WYFNIGX�XS s0 = 0

sk+1 = sk + vk , k = 0, . . . , N � 1
0 � vk

Linking the Physical System via Path Errors
‣ Adding physical dynamics: 
 
 
 
 
 
 
 

14

s0

s1

s2

. . .
sk

sN

. .
.

xk

x0

x1

x2

xN

. .
.

. . .

�lk

‣ Minimization of contouring errors 
and lag errors couples car dynamics 
to minimum time problem

�lk

�ck

QE\MQM^I sN

WYFNIGX�XS s0 = s̃

sk+1 = sk + vk , k = 0, . . . , N � 1

0 � vk � v̄

x0 = x̃

xk+1 = f (xk , uk) , k = 0, . . . , N � 1

xk � Xk , uk � Uk

�ck

QE\MQM^I sN �
N�

k=1

�c��ck�2 + �l��lk�2

WYFNIGX�XS s0 = s̃

sk+1 = sk + vk , k = 0, . . . , N � 1

0 � vk � v̄

x0 = x̃

xk+1 = f (xk , uk) , k = 0, . . . , N � 1

xk � Xk , uk � Uk

�ck = g(xk , sk) , �lk = h(xk , sk)

Contouring Control Adapted for Racing
‣ Machine tools: want to follow a given path accurately

• Contouring error must be low - must be high  
 
 
 
 
 
 
 
 
 

‣ Racing: lateral deviation from path 
is OK - choose low

15

s0

s1

s2

. . .
sk

sN

. .
.

xk

x0

x1

x2

xN

. .
.

. . .

�lk

�ck

�ck
QE\MQM^I sN �

N�

k=1

�c��ck�2 + �l��lk�2

WYFNIGX�XS s0 = s̃

sk+1 = sk + vk , k = 0, . . . , N � 1

0 � vk � v̄

x0 = x̃

xk+1 = f (xk , uk) , k = 0, . . . , N � 1

xk � Xk , uk � Uk

�ck = g(xk , sk) , �lk = h(xk , sk)

�c

�c

Racing: path is e.g.
• center line
• min. curvature 

path 

Race Track Constraints
‣ Track constraints in general non-convex

‣ Each point in the horizon is constrained
within two half spaces (state constraints)

‣ Points of previous prediction are used to
generate constraints (projection on track
borders)

16

Outline
‣ Introduction
‣ Hardware Setup
‣ Car Modeling
‣ Model Predictive Contouring Control
‣ Obstacle Avoidance
‣ Solution Approach
‣ Results
‣ Current/Future Work

17

Obstacle Avoidance via Track Morphing
‣ Overtaking problem is non-convex

‣ 2-level solution approach:
• high-level controller computes feasible

“corridor” (convex set)
• MPCC uses this corridor

‣ Dynamic programming computes
optimal corridor avoiding opponents

• Generate a spatial-temporal grid,
based on the last MPCC iteration

• minimize travelled distance and
deviation from the last trajectory

‣ Morph feasible set for MPCC based on
optimal corridor

18

Outline
‣ Introduction
‣ Hardware Setup
‣ Car Modeling
‣ Model Predictive Contouring Control
‣ Obstacle Avoidance
‣ Solution Approach
‣ Results
‣ Current/Future Work

19

Nonlinear MPC Implementation
‣ Real-time iteration/multiple shooting algorithm [Diehl 2002] with matrix

exponential as integrator. In each time step,
‣  

1. Get current position 
2. Construct new state trajectory with and new 
3. Generate new track constraints 
4. Linearize continuous-time dynamics around trajectory 
5. Discretize using matrix exponential  
6. Solve local convex approximation (QP) 
7. Apply first input

‣ Can be shown to converge to local 
optimum

‣ Initialization: run iterations from above 
until convergence

20

QE\ sN �
N�

k=1

�c��ck�2 + �l��lk�2

W�X� s0 = s̃ , x0 = x̃

sk+1 = sk + vk

0 � vk � v̄ , xk � Xk , uk � Uk

xk+1 = Akxk + Bkuk + gk

�ck = Ekxk + Fksk + fk

�lk = Gkxk +Hksk + hk

x̃
xN � xN�1x̃

Outline
‣ Introduction
‣ Hardware Setup
‣ Car Modeling
‣ Model Predictive Contouring Control
‣ Obstacle Avoidance
‣ Solution Approach
‣ Results
‣ Current/Future Work

21

‣ Computation times in milliseconds on  
Exynos 5410 (ARM Cortex A15 @1.6 GHz)

‣ Sampling rate of 50 Hz possible (4.4% overtime)

‣ Problem dimensions:

• Variables per stage: 13
• Constraints per stage: 16
• Horizon length: 40

‣ Total: QP with 520 variables, 640 constraints, LTV dynamics

Computation Times

22

Mean Stdev Max
Border Adjustment 0.7 0.24 1.05
QP Generation 2.34 0.37 2.79
QP with FORCES 14.43 1.40 21.46

Initialization

23

Closed-Loop Simulation

24

Closed Loop Results

25

−1 −0.5 0 0.5 1
1.2
1.4
1.6
1.8

X [m]

Y
[m

]

−1 −0.5 0 0.5 1
1.2
1.4
1.6
1.8

X [m]

Y
[m

]

−1 −0.5 0 0.5 1
1.2
1.4
1.6
1.8

X [m]

Y
[m

]

[m
/s

]

0.5

1

1.5

2

2.5

3

3.5

Autonomous RC Racing Using MPCC

26https://www.youtube.com/watch?v=w46kkjKda9s

https://www.youtube.com/watch?v=w46kkjKda9s

Obstacle Avoidance

27https://www.youtube.com/watch?v=JoHfJ6LEKVo

https://www.youtube.com/watch?v=JoHfJ6LEKVo

Outline
‣ Introduction
‣ Hardware Setup
‣ Car Modeling
‣ Model Predictive Contouring Control
‣ Obstacle Avoidance
‣ Solution Approach
‣ Results
‣ Current/Future Work

28

‣ Scenario MPC
‣ Additive error describing “any” kind of model mismatch
‣ difference between prediction and measured state
‣ “model-based” constraint tightening
‣ open-loop control inputs are too conservative

‣ Driving Backwards
‣ same model for driving backwards
‣ a lot harder than expected

‣ Piecewise-affine tire forces (on going)
‣ goal: using inverse optimization to  

solve problem efficiently

Additional Work using MPCC

29

−0.5 0 0.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

αr

F ry

Stationary Forces
Fitted MF

−0.5 0 0.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

αf

F fy

v y
[m

/s
]

!
[r
ad

/s
]

v
x

[m/s] v
x

[m/s]�[rad]�[rad]

1. Path planning based on motion primitives

2. MPC tracking optimal trajectory
‣ Motion primitives / Constant velocity points:

‣ Directly linking trims if the transition is feasible for bicycle model

Hierarchical Control

30

‣ Splits at fixed sampling times

‣ Can be modeled as hybrid system and analyzed formally

Hierarchical Control

31

‣ Assumption:
• new constant velocity can be reached

immediately
‣ Model simplifies

p(X,Y) := argmin
✓

(X �Xcen(✓))2 + (Y � Y cen(✓))2

p(XN,YN)

˙X = v̄
x

(q) cos(')� v̄
y

(q) sin(')

˙Y = v̄
x

(q) sin(') + v̄
y

(q) cos(')

'̇ = !̄(q)

v̄(q) = [v̄
x

(q), v̄
y

(q), !̄(q)]

‣ Splits at fixed sampling times

‣ Can be modeled as hybrid system and analyzed formally

Hierarchical Control

32

‣ Assumption:
• new constant velocity can be reached

immediately
‣ Find trajectory:

• with maximal progress
• which does not leave the track

‣ Tree grows exponentially

p(XN,YN)

p(X,Y) := argmin
✓

(X �Xcen(✓))2 + (Y � Y cen(✓))2

‣ Based on viability theory (invariant set theory)
‣ reconstructing all “safe” motion primitives given the state

‣ Driving straight with 2m/s with a fix angle

Fast Viable Path Planning

33

−1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X [m]

Y
 [
m

]

−0.2 0 0.2 0.4

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

X [m]

Y
 [
m

]

‣ Only generating trajectories which are recursive feasible
‣ only generate 145 vs 341 trajectories
‣ no constraint checks necessary

Fast Viable Path Planning

34

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
0

0.2

0.4

0.6

0.8

1

X [m]

Y
[m

]

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
0

0.2

0.4

0.6

0.8

1

X [m]

Y
[m

]

Naive Path Planner Vsafe(x) Path Planner
mean [s] 0.219 0.0205
max [s] 0.530 0.0749
min [s] 0.034 0.003

‣ Efficient and fast calculation of possible movements
‣ Could be used for dynamic obstacle avoidance

‣ robust or probabilistic collision avoidance
‣ store one optimal trajectory (we showed that this is a Nash equilibrium)

Prediction of Opponent

35

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

X [m]

Y
[m

]

−1 −0.8 −0.6 −0.4 −0.2 0 0.20

0.2

0.4

0.6

0.8

1

X [m]

Y
[m

]

Acknowledgments
‣ Students involved in MPCC:

• Florian Perrodin (First MPCC Simulations)
• Samuel Zhao (MPCC Implementation I)
• Kenneth Kuchera (MPCC Implementation II)
• Michael Janser (Dynamic Programming for obstacle avoidance)
• Sandro Merkli (Embedded controllers & electronics)
• Marcin Dymczyk (Embedded software stack & electronics)
• Nils Wenzler (Control loop and communication framework)
• Christian Stocker (Embedded hardware design)
• Michael Dahinden (Embedded hardware design)
• Simon Tanner (Vision System)

‣ Prof. Colin Jones & Prof. Manfred Morari

36

Closed Loop Results
‣ Lap time 8.5 - 9 s

37

