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Autonomous Driving

» DARPA Grand & Urban Challenge

» Google: >1.1 Mio km driven as of 4/14
» Tesla: >90% autonomous in 2016

» Mercedes: autonomous E & S-class

» BMW: autonomous drift with 235i

» ... and many others.




Autonomous Racing

» Autonomous Racing Audi TTS (Stanford University):

No online path planning / obstacle avoidance / overtaking




ORCA Autonomous Racing

Goal: Autonomous racing with obstacle avoidance
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The ORCA Race Car Setup

»

Built by ETH students from
standard components using
Kyosho dnano 1:43 RC cars

Multiple control boards with RF
connection to embedded car

Embedded board inside the car:

) ARM M4 microcontroller

D Gyro and accelerometer
H-bridges for motors

D Voltage & current measurement

[C] Comms (Bluetooth)

http://control.ee.ethz.ch/~racing/
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http://control.ee.ethz.ch/~racing/

Camera System

» Infrared based vision system

» PointGrey Flea3
» 100 fps
» resolution ~3.5mm

» 7 unique marker patterns
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Car Model

»

Bicycle model with generic tire forces

X = vy cos(p) — v, sin(y)
Y = v, sin(p) + vy cos(p)

Ve = E(FF'X — Ffysind + mvyw)

v, = E(Fr,y + Ff, cosd — mvyw)

1

W = —(ny/f cosd — Fryl)



Tire Force Model

» Pacejka’s “magic formula”
important for racing

Fr, = Ds sin(Cr arctan(Bray))

w/! V
arf = — arctan (g> +0
Vx

0.15F nOn-eXpeI’t
human
driver’s model

Fry = D,sin(C,arctan(B,a,))

> Or
N / V
_ Wl —
005 o, = arctan (—y>
-0.1 Vx
2
~0.15 Fr,x — (le — CmQVX)d — Cr — CdVX
)
-0.2 . -

-1 -0.5 0.5 1

Rot

» Car inputs: duty cycle for DC motor d, steering angle 6

» Coefficients identified in various experiments
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Path Parameterization

» Introduce variable s € [0, 1] denoting the normalized arc length of path:

s=20.75
0.5

1.0

s =20.25

» Write discrete-time dynamics for arc length:
Skt1 =Sk + Vk, W =0

» v is (constrained) input



Minimum Time Objective

» maximize travelled arc in N time steps < minimize time to travel Sy
(assuming sy < 1)

SN

N S

S1 maximize Sy
subject to sp = 8
§:So Sk+1:Sk—|-Vk,k: .....
) 0 < w<v



Linking the Physical System via Path Errors

» Adding physical dynamics:

.

.
o
.

maximize sy — Z’YcHekHQ —+ ’Y/HGkH2
maximize Sy x—1

subjectto 5o = §

S
0: NG Sk_|_1=Sk—|-Vk,k=O ..... N—1
’
" l' O<Vk<v
4 t N
o Xo — X

Xk_|_1=f(Xk,Uk),k=O ..... N—1

» Minimization of contouring errors Eﬁ
Xk € Xy, U € Uy

/ .
and lag errors €, couples car dynamics
to minimum time problem €¢ = g(xk, sk), € = h(xx, s)



Contouring Control Adapted for Racing

» Machine tools: want to follow a given path accurately
e Contouring error €; must be low - ¢ must be high

‘eﬁ(x‘/ < XN
3 /“‘ ‘Sk‘n"‘ _
i .
T a2 S N
Racing: Path ©o9 7 Nk maximize sy — Z%HEEHQ + i€l
* center line Co —1

* Min. curvature

bath subjectto sp = S

50
l' '7 X0 0<w <V
. ' N
. ; Xp = X
‘ Xk4+1 = f(Xk, Uk), k=0,...,
» Racing: lateral deviation from path X € X, U € Uy

is OK - choose 7c low €€ = g(Xk, s), € = h(xx, sk

Ski1 =Sk +Vk,k=0,..., N—1



Race Track Constraints

» Track constraints in general non-convex

» Each point in the horizon is constrained
within two half spaces (state constraints)

» Points of previous prediction are used to
generate constraints (projection on track
borders)
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Obstacle Avoidance via Track Morphing

» Overtaking problem is non-convex

» 2-level solution approach:

* high-level controller computes feasible
“corridor” (convex set)

e MPCC uses this corridor

» Dynamic programming computes
optimal corridor avoiding opponents

* Generate a spatial-temporal grid,
based on the last MPCC iteration

* minimize travelled distance and
deviation from the last trajectory

» Morph feasible set for MPCC based on
optimal corridor

=y
sy
¢ ® ® h )"
:: @Tl’ ® °
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Nonlinear MPC Implementation

» Real-time iteration/multiple shooting algorithm [Diehl 2002] with matrix
exponential as integrator. In each time step,

—> 1. Get current position X
2. Construct new state trajectory with X and new xy = Xy-1
3. Generate new track constraints
4. Linearize continuous-time dynamics around trajectory

5. Discretize using matrix exponential N
6. Solve local convex approximation (QP) —> max sy — » _ Yclleg]|® + illel ||
— 7. Apply first input k=1

st. S =5, Xo =X
Sk+1 = Sk + Vk

» Can be shown to converge to local 0< v <7, x¢ €Xe, €Uy

optimum
Xk+1 = AkXk + Bruk + gk

» Initialization: run iterations from above €€ = Exxx + Frsk + fi

until convergence
d EL = GyXxx + Hisk + hy
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Computation Times

»  Computation times in milliseconds on
Exynos 5410 (ARM Cortex A15 @1.6 GHz)

Mean | Stdev Max
Border Adjustment 0.7 | 0.24 1.05
QP Generation 234 | 037 | 2.79
QP with FORCES 14.43 1.40 | 21.46

» Sampling rate of 50 Hz possible (4.4% overtime)

» Problem dimensions:
* Variables per stage: 13
* (Constraints per stage: 16
* Horizon length: 40

» Total: QP with 520 variables, 640 constraints, LTV dynamics



Initialization
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Closed-Loop Simulation
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Closed Loop Results
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Autonomous RC Racing Using MPCC

ORCA - Optimal RC Autonomous Racing

Model Predictive Contouring Control
for 1:43 RC Cars

=, ETH:-zurich

https://www.youtube.com/watch?v=w46kkjKda9s



https://www.youtube.com/watch?v=w46kkjKda9s

Obstacle Avoidance

ORCA - Optimal RC Autonomous Racing

Model Predictive Contouring Control
Static Obstacle Avoidance

ST ETHzurich

https://www.youtube.com/watch?v=JoHfJ6LEKVo

27


https://www.youtube.com/watch?v=JoHfJ6LEKVo

Outline

» Introduction

» Hardware Setup

»  Car Modeling

» Model Predictive Contouring Control
» QObstacle Avoidance

»  Solution Approach

» Results

» Current/Future Work

28



Additional Work using MPCC

» Scenario MPC
»  Additive error describing “any” kind of model mismatch
» difference between prediction and measured state
»  “model-based” constraint tightening
» open-loop control inputs are too conservative

» Driving Backwards
» same model for driving backwards

» alot harder than expected ‘

» Piecewise-affine tire forces (on going)

» goal: using inverse optimization to
solve problem efficiently

0.5




Hierarchical Control

1. Path planning based on motion primitives
2. MPC tracking optimal trajectory

» Motion primitives / Constant velocity points:

.
ooooo

wlrad/s]
vy[m/s]

Ve [m/s] P | d[rad] d[rad] | ~<5 U [m/s]

» Directly linking trims if the transition is feasible for bicycle model



Hierarchical Control

» Splits at fixed sampling times

»  Assumption:

* new constant velocity can be reached
immediately

» Model simplifies

X = ¥,(q) cos(p) — Uy(q) sin(y)
Y = 0,(q) sin(y) + 0y (q) cos()
ve

0(q) = [02(a), Ty(q), ®(q)]
p(X,Y) ;= arg m@in(X — X(0))* + (Y — Y°(0))?

» Can be modeled as hybrid system and analyzed formally



Hierarchical Control

» Splits at fixed sampling times

»  Assumption:

* new constant velocity can be reached
immediately

» Find trajectory:
* with maximal progress
* which does not leave the track

» Tree grows exponentially

p(X,Y) := arg m@in(X — X(0))? + (Y — Y (0))?

» Can be modeled as hybrid system and analyzed formally



Fast Viable Path Planning

» Based on viability theory (invariant set theory)
» reconstructing all “safe” motion primitives given the state
» Driving straight with 2m/s with a fix angle

2 — : : 0.6

1.5}

1

Y [m]

~1 0 1 2 —0.2 0 0.2 0.4
X [m] X [m]



Fast Viable Path Planning

»

Only generating trajectories which are recursive feasible
» only generate 145 vs 341 trajectories

» NO constraint checks necessary

AN

-08 -06 -04 02 0
X [m]

Naive Path Planner

Vsate () Path Planner

mean [5] 0.219 0.0205
max [s] 0.530 0.0749
min [s] 0.034 0.003




Prediction of Opponent

» Efficient and fast calculation of possible movements

» Could be used for dynamic obstacle avoidance
» robust or probabilistic collision avoidance
» store one optimal trajectory (we showed that this is a Nash equilibrium)

0.4
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Closed Loop Results

» Laptime8.5-9s
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