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Autonomous Driving
‣ DARPA Grand & Urban Challenge 
‣ Google: >1.1 Mio km driven as of 4/14 
‣ Tesla: >90% autonomous in 2016 
‣ Mercedes: autonomous E & S-class 
‣ BMW: autonomous drift with 235i 
‣ ... and many others.
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Autonomous Racing
‣ Autonomous Racing Audi TTS (Stanford University): 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No online path planning / obstacle avoidance / overtaking



ORCA Autonomous Racing

4Goal: Autonomous racing with obstacle avoidance
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The ORCA Race Car Setup
‣ Built by ETH students from 

standard components using 
Kyosho dnano 1:43 RC cars 

‣ Multiple control boards with RF 
connection to embedded car 

‣ Embedded board inside the car:  
• ARM M4 microcontroller 
• Gyro and accelerometer 
• H-bridges for motors 
• Voltage & current measurement 
• Comms (Bluetooth)
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http://control.ee.ethz.ch/~racing/

http://control.ee.ethz.ch/~racing/


Camera System
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‣ Infrared based vision system 
‣ PointGrey Flea3 

‣ 100 fps 
‣ resolution ~3.5mm 

‣ 7 unique marker patterns
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Car Model
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‣ Bicycle model with generic tire forces
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‣ Pacejka’s “magic formula” 

‣ Car inputs: duty cycle for DC motor d, steering angle δ 
‣ Coefficients identified in various experiments

Tire Force Model
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Path Parameterization
‣ Introduce variable                denoting the normalized arc length of path: 

‣ Write discrete-time dynamics for arc length: 

‣     is (constrained) input
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Minimum Time Objective
‣ maximize travelled arc in N time steps       minimize time to travel 

(assuming           )
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Linking the Physical System via Path Errors
‣ Adding physical dynamics: 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‣ Minimization of contouring errors 
and lag errors     couples car dynamics 
to minimum time problem
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Contouring Control Adapted for Racing
‣ Machine tools: want to follow a given path accurately 

• Contouring error       must be low -      must be high  
 
 
 
 
 
 
 
 
 

‣ Racing: lateral deviation from path 
is OK - choose      low  
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Racing: path is e.g. 
• center line 
• min. curvature 

path 



Race Track Constraints
‣ Track constraints in general non-convex 

‣ Each point in the horizon is constrained 
within two half spaces (state constraints) 

‣ Points of previous prediction are used to 
generate constraints (projection on track 
borders)
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Obstacle Avoidance via Track Morphing
‣ Overtaking problem is non-convex  

‣ 2-level solution approach:  
• high-level controller computes feasible 

“corridor” (convex set) 
• MPCC uses this corridor 

‣ Dynamic programming computes 
optimal corridor avoiding opponents 

• Generate a spatial-temporal grid, 
based on the last MPCC iteration 

• minimize travelled distance and 
deviation from the last trajectory 

‣ Morph feasible set for MPCC based on 
optimal corridor
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Nonlinear MPC Implementation
‣ Real-time iteration/multiple shooting algorithm [Diehl 2002] with matrix 

exponential as integrator. In each time step, 
‣  

1. Get current position 
2. Construct new state trajectory with    and new 
3. Generate new track constraints 
4. Linearize continuous-time dynamics around trajectory 
5. Discretize using matrix exponential  
6. Solve local convex approximation (QP) 
7. Apply first input 

‣ Can be shown to converge to local 
optimum 

‣ Initialization: run iterations from above 
until convergence
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‣ Computation times in milliseconds on  
Exynos 5410 (ARM Cortex A15 @1.6 GHz) 

‣ Sampling rate of 50 Hz possible (4.4% overtime)

‣ Problem dimensions: 

• Variables per stage: 13  
• Constraints per stage: 16 
• Horizon length: 40 

‣ Total: QP with 520 variables, 640 constraints, LTV dynamics

Computation Times
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Mean Stdev Max
Border Adjustment 0.7 0.24 1.05
QP Generation 2.34 0.37 2.79
QP with FORCES 14.43 1.40 21.46



Initialization
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Closed-Loop Simulation
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Closed Loop Results
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Autonomous RC Racing Using MPCC

26https://www.youtube.com/watch?v=w46kkjKda9s

https://www.youtube.com/watch?v=w46kkjKda9s


Obstacle Avoidance

27https://www.youtube.com/watch?v=JoHfJ6LEKVo

https://www.youtube.com/watch?v=JoHfJ6LEKVo
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‣ Scenario MPC 
‣ Additive error describing “any” kind of model mismatch 
‣ difference between prediction and measured state 
‣ “model-based” constraint tightening 
‣ open-loop control inputs are too conservative 

‣  Driving Backwards 
‣ same model for driving backwards 
‣ a lot harder than expected 

‣ Piecewise-affine tire forces (on going) 
‣ goal: using inverse optimization to  

solve problem efficiently

Additional Work using MPCC

29

−0.5 0 0.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

αr

F ry
 

 
Stationary Forces
Fitted MF

−0.5 0 0.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

αf

F fy



v y
[m

/s
]

!
[r
ad

/s
]

v
x

[m/s] v
x

[m/s]�[rad]�[rad]

1. Path planning based on motion primitives 

2. MPC tracking optimal trajectory 
‣ Motion primitives / Constant velocity points: 

‣ Directly linking trims if the transition is feasible for bicycle model

Hierarchical Control
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‣ Splits at fixed sampling times 

‣ Can be modeled as hybrid system and analyzed formally

Hierarchical Control
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‣ Assumption: 
• new constant velocity can be reached 

immediately 
‣ Model simplifies

p(X,Y ) := argmin
✓

(X �Xcen(✓))2 + (Y � Y cen(✓))2

p(XN,YN)

˙X = v̄
x

(q) cos(')� v̄
y

(q) sin(')

˙Y = v̄
x

(q) sin(') + v̄
y

(q) cos(')

'̇ = !̄(q)

v̄(q) = [v̄
x

(q), v̄
y
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‣ Splits at fixed sampling times 

‣ Can be modeled as hybrid system and analyzed formally

Hierarchical Control
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‣ Assumption: 
• new constant velocity can be reached 

immediately 
‣ Find trajectory: 

• with maximal progress 
• which does not leave the track 

‣ Tree grows exponentially

p(XN,YN)

p(X,Y ) := argmin
✓

(X �Xcen(✓))2 + (Y � Y cen(✓))2



‣ Based on viability theory (invariant set theory) 
‣ reconstructing all “safe” motion primitives given the state 

‣ Driving straight with 2m/s with a fix angle

Fast Viable Path Planning
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‣ Only generating trajectories which are recursive feasible 
‣ only generate 145 vs 341 trajectories 
‣ no constraint checks necessary

Fast Viable Path Planning
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‣ Efficient and fast calculation of possible movements 
‣ Could be used for dynamic obstacle avoidance 

‣ robust or probabilistic collision avoidance 
‣ store one optimal trajectory (we showed that this is a Nash equilibrium)

Prediction of Opponent 
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Closed Loop Results
‣ Lap time 8.5 - 9 s
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