Autonomous Racing by Model Predictive Contouring Control

Alexander Liniger Alexander Domahidi, John Lygeros, Manfred Morari Berkeley April 2015

Autonomous Driving

- DARPA Grand & Urban Challenge
- Google: >1.1 Mio km driven as of 4/14
- ▶ Tesla: >90% autonomous in 2016
- Mercedes: autonomous E & S-class
- BMW: autonomous drift with 235i
- ... and many others.

Autonomous Racing

• Autonomous Racing Audi TTS (Stanford University):

No online path planning / obstacle avoidance / overtaking

ORCA Autonomous Racing

Goal: Autonomous racing with obstacle avoidance

Outline

- Introduction
- Hardware Setup
- Car Modeling
- Model Predictive Contouring Control
- Obstacle Avoidance
- Solution Approach
- Results
- Current/Future Work

The ORCA Race Car Setup

- Built by ETH students from standard components using Kyosho dnano 1:43 RC cars
- Multiple control boards with RF connection to embedded car
- Embedded board inside the car:
 ARM M4 microcontroller
 Gyro and accelerometer
 H-bridges for motors
 Voltage & current measurement
 - Comms (Bluetooth)

6

Camera System

- Infrared based vision system
- PointGrey Flea3
 - 100 fps
 - resolution ~3.5mm

► 7 unique marker patterns

Outline

- Introduction
- Hardware Setup
- Car Modeling
- Model Predictive Contouring Control
- Obstacle Avoidance
- Solution Approach
- Results
- Current/Future Work

Car Model

• Bicycle model with generic tire forces

$$\dot{X} = v_x \cos(\varphi) - v_y \sin(\varphi)$$

$$\dot{Y} = v_x \sin(\varphi) + v_y \cos(\varphi)$$

$$\dot{\varphi} = \omega$$

$$\dot{v}_x = \frac{1}{m} (F_{r,x} - F_{f,y} \sin \delta + m v_y \omega)$$

$$\dot{v}_y = \frac{1}{m} (F_{r,y} + F_{f,y} \cos \delta - m v_x \omega)$$

$$\dot{\omega} = \frac{1}{l_z} (F_{f,y} l_f \cos \delta - F_{r,y} l_r)$$

Tire Force Model

Pacejka's "magic formula"

- Car inputs: duty cycle for DC motor d, steering angle δ
- Coefficients identified in various experiments

Outline

- Introduction
- Hardware Setup
- Car Modeling
- Model Predictive Contouring Control
- Obstacle Avoidance
- Solution Approach
- Results
- Current/Future Work

Path Parameterization

• Introduce variable $s \in [0, 1]$ denoting the normalized arc length of path:

• Write discrete-time dynamics for arc length:

$$s_{k+1}=s_k+v_k$$
 , $v_k\geq 0$

• v_k is (constrained) input

Minimum Time Objective

• maximize travelled arc in N time steps \Leftrightarrow minimize time to travel S_N (assuming $s_N < 1$)

Linking the Physical System via Path Errors

Adding physical dynamics:

maximize $s_N - \sum_{k=1} \gamma_c \|\epsilon_k^c\|^2 + \gamma_I \|\epsilon_k^I\|^2$ maximize s_N S_1 subject to $s_0 = \tilde{s}$ X_1 $s_{k+1} = s_k + v_k$, k = 0, ..., N-1 $0 \leq v_k \leq \overline{v}$ $x_0 = \tilde{x}$ $x_{k+1} = f(x_k, u_k), \ k = 0, \dots, N-1$

 $x_k \in \mathbb{X}_k, u_k \in \mathbb{U}_k$

 $\epsilon_{k}^{c} = q(x_{k}, s_{k}), \ \epsilon_{k}^{l} = h(x_{k}, s_{k})$

14

• Minimization of contouring errors ϵ_k^c and lag errors ϵ_k^l couples car dynamics to minimum time problem

Contouring Control Adapted for Racing

- Machine tools: want to follow a given path accurately
 - Contouring error ϵ_k^c must be low γ_c must be high

Racing: path is e.g.

- center line
- min. curvature

path

Racing: lateral deviation from path is OK - choose γ_c low

 X_1

 S_1

*S*₀

maximize
$$s_N - \sum_{k=1}^N \gamma_c \|\epsilon_k^c\|^2 + \gamma_I \|\epsilon_k^I\|^2$$

subject to $s_0 = \tilde{s}$
 $s_{k+1} = s_k + v_k$, $k = 0, ..., N - 1$
 $0 \le v_k \le \bar{v}$
 $x_0 = \tilde{x}$
 $x_{k+1} = f(x_k, u_k)$, $k = 0, ..., N - 1$
 $x_k \in \mathbb{X}_k$, $u_k \in \mathbb{U}_k$
 $\epsilon_k^c = g(x_k, s_k)$, $\epsilon_k^I = h(x_k, s_k)$

Race Track Constraints

- Track constraints in general non-convex
- Each point in the horizon is constrained within two half spaces (state constraints)
- Points of previous prediction are used to generate constraints (projection on track borders)

Outline

- Introduction
- Hardware Setup
- Car Modeling
- Model Predictive Contouring Control
- Obstacle Avoidance
- Solution Approach
- Results
- Current/Future Work

Obstacle Avoidance via Track Morphing

- Overtaking problem is non-convex
- 2-level solution approach:
 - high-level controller computes feasible "corridor" (convex set)
 - MPCC uses this corridor
- Dynamic programming computes optimal corridor avoiding opponents
 - Generate a spatial-temporal grid, based on the last MPCC iteration
 - minimize travelled distance and deviation from the last trajectory
- Morph feasible set for MPCC based on optimal corridor

Outline

- Introduction
- Hardware Setup
- Car Modeling
- Model Predictive Contouring Control
- Obstacle Avoidance
- Solution Approach
- Results
- Current/Future Work

Nonlinear MPC Implementation

- Real-time iteration/multiple shooting algorithm [Diehl 2002] with matrix exponential as integrator. In each time step,
- → 1. Get current position \tilde{x}
 - 2. Construct new state trajectory with \tilde{x} and new $x_N \equiv x_{N-1}$
 - 3. Generate new track constraints
 - 4. Linearize continuous-time dynamics around trajectory
 - 5. Discretize using matrix exponential
 - 6. Solve local convex approximation (QP) $\longrightarrow \max s_N \sum \gamma_c \|\epsilon_k^c\|^2 + \gamma_I \|\epsilon_k^I\|^2$
 - 7. Apply first input
- Can be shown to converge to local optimum
- Initialization: run iterations from above until convergence

$$\max s_{N} - \sum_{k=1}^{r} \gamma_{c} \|\epsilon_{k}^{c}\|^{2} + \gamma_{l} \|\epsilon_{k}^{\prime}\|^{2}$$

s.t. $s_{0} = \tilde{s}$, $x_{0} = \tilde{x}$
 $s_{k+1} = s_{k} + v_{k}$
 $0 \leq v_{k} \leq \bar{v}$, $x_{k} \in \mathbb{X}_{k}$, $u_{k} \in \mathbb{U}_{k}$
 $x_{k+1} = A_{k}x_{k} + B_{k}u_{k} + g_{k}$
 $\epsilon_{k}^{c} = E_{k}x_{k} + F_{k}s_{k} + f_{k}$
 $\epsilon_{k}^{l} = G_{k}x_{k} + H_{k}s_{k} + h_{k}$

Outline

- Introduction
- Hardware Setup
- Car Modeling
- Model Predictive Contouring Control
- Obstacle Avoidance
- Solution Approach
- Results
- Current/Future Work

Computation Times

 Computation times in milliseconds on Exynos 5410 (ARM Cortex A15 @1.6 GHz)

	Mean	Stdev	Max
Border Adjustment	0.7	0.24	1.05
QP Generation	2.34	0.37	2.79
QP with FORCES	14.43	1.40	21.46

- Sampling rate of 50 Hz possible (4.4% overtime)
- Problem dimensions:
 - Variables per stage: 13
 - Constraints per stage: 16
 - Horizon length: 40
- Total: QP with 520 variables, 640 constraints, LTV dynamics

Initialization

Closed-Loop Simulation

Closed Loop Results

Autonomous RC Racing Using MPCC

ORCA - Optimal RC Autonomous Racing

Model Predictive Contouring Control for 1:43 RC Cars

https://www.youtube.com/watch?v=w46kkjKda9s

Obstacle Avoidance

ORCA - Optimal RC Autonomous Racing

Model Predictive Contouring Control Static Obstacle Avoidance

https://www.youtube.com/watch?v=JoHfJ6LEKVo

Outline

- Introduction
- Hardware Setup
- Car Modeling
- Model Predictive Contouring Control
- Obstacle Avoidance
- Solution Approach
- Results
- Current/Future Work

Additional Work using MPCC

- Scenario MPC
 - Additive error describing "any" kind of model mismatch
 - difference between prediction and measured state
 - "model-based" constraint tightening
 - open-loop control inputs are too conservative
- Driving Backwards
 - same model for driving backwards
 - a lot harder than expected
- Piecewise-affine tire forces (on going)
 - goal: using inverse optimization to solve problem efficiently

Hierarchical Control

- 1. Path planning based on motion primitives
- 2. MPC tracking optimal trajectory
- Motion primitives / Constant velocity points:

• Directly linking trims if the transition is feasible for bicycle model

Hierarchical Control

Splits at fixed sampling times

- Assumption:
 - new constant velocity can be reached immediately
- Model simplifies

$$\dot{X} = \bar{v}_x(q)\cos(\varphi) - \bar{v}_y(q)\sin(\varphi)$$
$$\dot{Y} = \bar{v}_x(q)\sin(\varphi) + \bar{v}_y(q)\cos(\varphi)$$
$$\dot{\varphi} = \bar{\omega}(q)$$
$$\bar{v}(q) = [\bar{v}_x(q), \bar{v}_y(q), \bar{\omega}(q)]$$

$$p(X,Y) := \arg\min_{\theta} (X - X^{\operatorname{cen}}(\theta))^2 + (Y - Y^{\operatorname{cen}}(\theta))^2$$

• Can be modeled as hybrid system and analyzed formally

Hierarchical Control

Splits at fixed sampling times

- Assumption:
 - new constant velocity can be reached immediately
- Find trajectory:
 - with maximal progress
 - which does not leave the track
- Tree grows exponentially

$$p(X,Y) := \arg\min_{\theta} (X - X^{\operatorname{cen}}(\theta))^2 + (Y - Y^{\operatorname{cen}}(\theta))^2$$

Can be modeled as hybrid system and analyzed formally

Fast Viable Path Planning

- Based on viability theory (invariant set theory)
 - reconstructing all "safe" motion primitives given the state
- Driving straight with 2m/s with a fix angle

Fast Viable Path Planning

- Only generating trajectories which are recursive feasible
 - only generate 145 vs 341 trajectories
 - no constraint checks necessary

Prediction of Opponent

- Efficient and fast calculation of possible movements
- Could be used for dynamic obstacle avoidance
 - robust or probabilistic collision avoidance
 - store one optimal trajectory (we showed that this is a Nash equilibrium)

Acknowledgments

- Students involved in MPCC:
 - Florian Perrodin (First MPCC Simulations)
 - Samuel Zhao (MPCC Implementation I)
 - Kenneth Kuchera (MPCC Implementation II)
 - Michael Janser (Dynamic Programming for obstacle avoidance)
 - Sandro Merkli (Embedded controllers & electronics)
 - Marcin Dymczyk (Embedded software stack & electronics)
 - Nils Wenzler (Control loop and communication framework)
 - Christian Stocker (Embedded hardware design)
 - Michael Dahinden (Embedded hardware design)
 - Simon Tanner (Vision System)
- Prof. Colin Jones & Prof. Manfred Morari

Closed Loop Results

з

Time [s]