
Optimization-Based Collision
Avoidance

Institut für Automatik

Automatic Control Laboratory

Alexander Liniger

George Zhang and Francesco Borrelli

IfA Coffee Talk

-10 -5 0 5 10
X [m]

0

2

4

6

8

10

12

Y
[m

]

Motivation

2

Start

Finish

Motivation

2

Start

Finish

Motivation

2

Start

Finish
Obstacle 1

Obstacle 2

Motivation

2

Start

Finish
Obstacle 1

Obstacle 2

Motivation

3

Start

Finish

Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

Motivation

3

Start

Finish

Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

min
x,u

N�

k=0

�(xk , uk)

Z�[� x0 = xS, xN+1 = xF
xk+1 = f (xk , uk),
h(xk , uk) � 0,
E(xk) �O(m) = �,

�
�

�
k = 0, . . . , N,
m = 1, . . . ,M,

Motion planning optimization problem

Cost

Start and finish state
Dynamics
Collision constraints

Motivation

3

Start

Finish

Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

min
x,u

N�

k=0

�(xk , uk)

Z�[� x0 = xS, xN+1 = xF
xk+1 = f (xk , uk),
h(xk , uk) � 0,
E(xk) �O(m) = �,

�
�

�
k = 0, . . . , N,
m = 1, . . . ,M,

Motion planning optimization problem

Cost

Start and finish state
Dynamics
Collision constraints

Signed distance

4

ZK(E(x),O) := KPZ[(E(x),O)� WLU(E(x),O)

E(x) �O = � � ZK(E(x),O) > 0

Signed distance

dist > 0
pen = 0

dist = 0
pen > 0

Collision constraints reformulation

Signed distance

4

O(m) = {y � Rn : A(m)y �K b(m)}‣ Obstacles
- Convex obstacles

ZK(E(x),O) := KPZ[(E(x),O)� WLU(E(x),O)

E(x) �O = � � ZK(E(x),O) > 0

Signed distance

dist > 0
pen = 0

dist = 0
pen > 0

Collision constraints reformulation

Signed distance

4

O(m) = {y � Rn : A(m)y �K b(m)}‣ Obstacles
- Convex obstacles
- Union of convex sets can well

approximate non-convex sets

ZK(E(x),O) := KPZ[(E(x),O)� WLU(E(x),O)

E(x) �O = � � ZK(E(x),O) > 0

Signed distance

dist > 0
pen = 0

dist = 0
pen > 0

Collision constraints reformulation

Signed distance

4

O(m) = {y � Rn : A(m)y �K b(m)}‣ Obstacles
- Convex obstacles
- Union of convex sets can well

approximate non-convex sets

‣ Ego shape

ZK(E(x),O) := KPZ[(E(x),O)� WLU(E(x),O)

E(x) �O = � � ZK(E(x),O) > 0

Signed distance

dist > 0
pen = 0

dist = 0
pen > 0

Collision constraints reformulation

Signed distance

4

O(m) = {y � Rn : A(m)y �K b(m)}‣ Obstacles
- Convex obstacles
- Union of convex sets can well

approximate non-convex sets

‣ Ego shape
- Point mass E(xk) = p(xk)

ZK(E(x),O) := KPZ[(E(x),O)� WLU(E(x),O)

E(x) �O = � � ZK(E(x),O) > 0

Signed distance

dist > 0
pen = 0

dist = 0
pen > 0

Collision constraints reformulation

Signed distance

4

O(m) = {y � Rn : A(m)y �K b(m)}‣ Obstacles
- Convex obstacles
- Union of convex sets can well

approximate non-convex sets

‣ Ego shape
- Point mass

- Full-sized E(xk) = R(xk)B+ t(xk), B := {y : Gy �K̄ g}

E(xk) = p(xk)

ZK(E(x),O) := KPZ[(E(x),O)� WLU(E(x),O)

E(x) �O = � � ZK(E(x),O) > 0

Signed distance

dist > 0
pen = 0

dist = 0
pen > 0

Collision constraints reformulation

Point mass collision avoidance

5

Smooth collision constraint reformulation

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

‣ Point mass ego shape -> extract position from state

Point mass collision avoidance

5

Smooth collision constraint reformulation

E(xk) = p(xk)

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

‣ Point mass ego shape -> extract position from state
‣ When is it “easy” to handle the collision constraint ?

Point mass collision avoidance

5

Smooth collision constraint reformulation

E(xk) = p(xk)

E(x) �O = � � ZK(E(x),O) > 0

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

‣ Point mass ego shape -> extract position from state
‣ When is it “easy” to handle the collision constraint ?

- Avoiding a circle/ellipse
- Polytopes + linear dynamics -> mixed integer or disjunctive programming

Point mass collision avoidance

5

Smooth collision constraint reformulation

E(xk) = p(xk)

o(p(xk)� o)2 � d2
E(x) �O = � � ZK(E(x),O) > 0

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

(p(xk)� o)2 � r2

‣ Point mass ego shape -> extract position from state
‣ When is it “easy” to handle the collision constraint ?

- Avoiding a circle/ellipse
- Polytopes + linear dynamics -> mixed integer or disjunctive programming

‣ We show that the collision constraint can be reformulated as a smooth but non-
convex constraint by reformulating the distance and signed distance

Point mass collision avoidance

5

Smooth collision constraint reformulation

E(x) �O = � � ZK(E(x),O) > 0E(x) �O = � � KPZ[(E(x),O) > 0

E(xk) = p(xk)

o(p(xk)� o)2 � d2
E(x) �O = � � ZK(E(x),O) > 0

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

(p(xk)� o)2 � r2

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two sets is larger
than a safety distance is equivalent to the following constraints:

Distance reformulation

6

KPZ[(E(x),O) > dTPU �� �� �K� 0: (Ap � b)�� > dTPU, �A���� � 1

Theorem 1: Distance reformulation

dTPU � 0

O = {y � Rn : Ay �K b}
E(x) = p

‣ Proof sketch:
- is given by the following convex program:

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two sets is larger
than a safety distance is equivalent to the following constraints:

Distance reformulation

6

KPZ[(E(x),O) > dTPU �� �� �K� 0: (Ap � b)�� > dTPU, �A���� � 1

KPZ[(E(x),O) = min
t
{�t� : A(E(x) + t) �K b}

Theorem 1: Distance reformulation

dTPU � 0

O = {y � Rn : Ay �K b}
E(x) = p

E(x) �O = � � KPZ[(E(x),O) > 0

p + t

E(x) = p

‣ Proof sketch:
- is given by the following convex program:

- By strong duality the dual is also equal to the distance

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two sets is larger
than a safety distance is equivalent to the following constraints:

Distance reformulation

6

KPZ[(E(x),O) > dTPU �� �� �K� 0: (Ap � b)�� > dTPU, �A���� � 1

KPZ[(E(x),O) = min
t
{�t� : A(E(x) + t) �K b}

KPZ[(E(x),O) = max
�

�
(AE(x)� b)�� : �A���� � 1, � �K� 0

�

Theorem 1: Distance reformulation

dTPU � 0

O = {y � Rn : Ay �K b}
E(x) = p

E(x) �O = � � KPZ[(E(x),O) > 0

p + t

E(x) = p

‣ Proof sketch:
- is given by the following convex program:

- By strong duality the dual is also equal to the distance

- If there exists a λ which fulfils these conditions the distance constraint is fulfilled

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two sets is larger
than a safety distance is equivalent to the following constraints:

Distance reformulation

6

KPZ[(E(x),O) > dTPU �� �� �K� 0: (Ap � b)�� > dTPU, �A���� � 1

KPZ[(E(x),O) = min
t
{�t� : A(E(x) + t) �K b}

KPZ[(E(x),O) = max
�

�
(AE(x)� b)�� : �A���� � 1, � �K� 0

�

Theorem 1: Distance reformulation

dTPU � 0

O = {y � Rn : Ay �K b}
E(x) = p

E(x) �O = � � KPZ[(E(x),O) > 0

p + t

E(x) = p

Distance Reformulation

7

Collision free motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

min
x,u,�

N�

k=0

�(xk , uk)

Z�[� x0 = xS, xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)k > 0,

�A(m)��(m)k �� � 1, �(m)k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

Distance Reformulation

7

Collision free motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

min
x,u,�

N�

k=0

�(xk , uk)

Z�[� x0 = xS, xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)k > 0,

�A(m)��(m)k �� � 1, �(m)k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

Distance Reformulation

7

Collision free motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

min
x,u,�

N�

k=0

�(xk , uk)

Z�[� x0 = xS, xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)k > 0,

�A(m)��(m)k �� � 1, �(m)k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,

If an appropriate cone is used, the

reformulation is smooth (but nonlinear)

Easy to add as a constraint in NLP solver
K

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

Distance Reformulation

7

Collision free motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

min
x,u,�

N�

k=0

�(xk , uk)

Z�[� x0 = xS, xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)k > 0,

�A(m)��(m)k �� � 1, �(m)k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,

If an appropriate cone is used, the

reformulation is smooth (but nonlinear)

Easy to add as a constraint in NLP solver
K

No information when overlapping

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two sets is larger
than a safety distance is equivalent to the following constraints:

Signed distance reformulation

8

Theorem 2: Signed distance reformulation

O = {y � Rn : Ay �K b}
E(x) = p

d � R

ZK(E(x),O) > d �� �� �K� 0: (Ap � b)�� > d, �A���� = 1

‣ Proof sketch:
- Penetration is non-convex -> strong duality does not hold!

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two sets is larger
than a safety distance is equivalent to the following constraints:

Signed distance reformulation

8

Theorem 2: Signed distance reformulation

O = {y � Rn : Ay �K b}
E(x) = p

d � R

ZK(E(x),O) > d �� �� �K� 0: (Ap � b)�� > d, �A���� = 1

‣ Proof sketch:
- Penetration is non-convex -> strong duality does not hold!
- Reformulate the penetration as the minimum

distance from any supporting hyperplane to ,

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two sets is larger
than a safety distance is equivalent to the following constraints:

Signed distance reformulation

8

Theorem 2: Signed distance reformulation

O = {y � Rn : Ay �K b}
E(x) = p

E(x) = p

d � R

p

ZK(E(x),O) > d �� �� �K� 0: (Ap � b)�� > d, �A���� = 1

‣ Proof sketch:
- Penetration is non-convex -> strong duality does not hold!
- Reformulate the penetration as the minimum

distance from any supporting hyperplane to ,
- Allows to “recover” convexity and thus strong duality

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two sets is larger
than a safety distance is equivalent to the following constraints:

Signed distance reformulation

8

Theorem 2: Signed distance reformulation

O = {y � Rn : Ay �K b}
E(x) = p

E(x) = p

WLU(E(x),O) < pTH_ �� �� �K� 0: (b � Ap)�� < pTH_, �A���� = 1

d � R

p

ZK(E(x),O) > d �� �� �K� 0: (Ap � b)�� > d, �A���� = 1

‣ Proof sketch:
- Penetration is non-convex -> strong duality does not hold!
- Reformulate the penetration as the minimum

distance from any supporting hyperplane to ,
- Allows to “recover” convexity and thus strong duality

- Signed distance is if separated and if overlapping

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two sets is larger
than a safety distance is equivalent to the following constraints:

Signed distance reformulation

8

Theorem 2: Signed distance reformulation

O = {y � Rn : Ay �K b}
E(x) = p

E(x) = p

WLU(E(x),O) < pTH_ �� �� �K� 0: (b � Ap)�� < pTH_, �A���� = 1

�WLU(E(x),O)KPZ[(E(x),O)

d � R

p

ZK(E(x),O) > d �� �� �K� 0: (Ap � b)�� > d, �A���� = 1

Signed distance Reformulation

9

Minimum penetration motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

min
x,u,s,�

N�

k=0

�

�(xk , uk) + � ·
M�

m=1

s(m)
k

�

Z�[� x0 = x(0), xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)
k > �s(m)

k ,

�A(m)��(m)
k �� = 1,

s(m)
k � 0, �(m)

k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,

Signed distance Reformulation

9

Minimum penetration motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

min
x,u,s,�

N�

k=0

�

�(xk , uk) + � ·
M�

m=1

s(m)
k

�

Z�[� x0 = x(0), xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)
k > �s(m)

k ,

�A(m)��(m)
k �� = 1,

s(m)
k � 0, �(m)

k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,

Signed distance Reformulation

9

Minimum penetration motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

min
x,u,s,�

N�

k=0

�

�(xk , uk) + � ·
M�

m=1

s(m)
k

�

Z�[� x0 = x(0), xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)
k > �s(m)

k ,

�A(m)��(m)
k �� = 1,

s(m)
k � 0, �(m)

k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,

Possible to use soft constraints

Solver has information about penetration

Signed distance Reformulation

9

Minimum penetration motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

min
x,u,s,�

N�

k=0

�

�(xk , uk) + � ·
M�

m=1

s(m)
k

�

Z�[� x0 = x(0), xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)
k > �s(m)

k ,

�A(m)��(m)
k �� = 1,

s(m)
k � 0, �(m)

k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,

Possible to use soft constraints

Solver has information about penetration

Additional non-convex constraint

‣ Full-sized ego shape: ego shape is a rotated and translated convex set

Full-sized collision avoidance

10

Smooth collision constraint reformulation

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

‣ Full-sized ego shape: ego shape is a rotated and translated convex set

Full-sized collision avoidance

10

Smooth collision constraint reformulation

E(xk) = R(xk)B+ t(xk), B := {y : Gy �K̄ g}

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

‣ Full-sized ego shape: ego shape is a rotated and translated convex set

‣ When is it “easy” to handle the collision constraint ?
- Ego shape is a circle and obstacle is a circle or ellipse

Full-sized collision avoidance

10

Smooth collision constraint reformulation

E(xk) = R(xk)B+ t(xk), B := {y : Gy �K̄ g}

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

E(x) �O = � � ZK(E(x),O) > 0

‣ Full-sized ego shape: ego shape is a rotated and translated convex set

‣ When is it “easy” to handle the collision constraint ?
- Ego shape is a circle and obstacle is a circle or ellipse

‣ We show that the collision constraint can be reformulated as a smooth but non-
convex constraint by reformulating the distance and signed distance

Full-sized collision avoidance

10

Smooth collision constraint reformulation

E(xk) = R(xk)B+ t(xk), B := {y : Gy �K̄ g}

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

E(x) �O = � � ZK(E(x),O) > 0

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two
sets is larger than a distance is equivalent to the following constraints:

Distance reformulation

11

Theorem 3: Full-sized distance reformulation

dTPU � 0

O = {y � Rn : Ay �K b}
E(xk) = R(x)B+ t(x)

KPZ[(E(x),O) > dTPU �� �� �K� 0, µ �K̄� 0:
� g�µ+ (At(x)� b)�� > dTPU, G

�µ+ R(x)�A�� = 0, �A���� � 1

‣ Proof sketch:
- is given by the following convex program:

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two
sets is larger than a distance is equivalent to the following constraints:

Distance reformulation

11

Theorem 3: Full-sized distance reformulation

dTPU � 0

O = {y � Rn : Ay �K b}

E(x) �O = � � KPZ[(E(x),O) > 0

E(xk) = R(x)B+ t(x)

KPZ[(E(x),O) > dTPU �� �� �K� 0, µ �K̄� 0:
� g�µ+ (At(x)� b)�� > dTPU, G

�µ+ R(x)�A�� = 0, �A���� � 1

KPZ[(E(x),O) = min
e,o
{�e � o� : Ao �K b, e � E(x)} o

e

‣ Proof sketch:
- is given by the following convex program:

- By strong duality the dual is also equal to the distance

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two
sets is larger than a distance is equivalent to the following constraints:

Distance reformulation

11

Theorem 3: Full-sized distance reformulation

dTPU � 0

O = {y � Rn : Ay �K b}

E(x) �O = � � KPZ[(E(x),O) > 0

E(xk) = R(x)B+ t(x)

KPZ[(E(x),O) > dTPU �� �� �K� 0, µ �K̄� 0:
� g�µ+ (At(x)� b)�� > dTPU, G

�µ+ R(x)�A�� = 0, �A���� � 1

KPZ[(E(x),O) = min
e,o
{�e � o� : Ao �K b, e � E(x)}

KPZ[(E(x),O) =max
�,µ
{�g�µ+ (At(x)� b)�� : G�µ+ R(x)�A�� = 0,

�A���� � 1, � �K� 0, µ �K̄� 0}

o

e

min
x,u,�,µ

N�

k=0

�(xk , uk)

Z�[� x0 = x(0), xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

�g�µ(m)
k + (A(m) t(xk)� b(m))��(m)

k > 0,

G�µ(m)
k + R(xk)�A(m)��(m)

k = 0,

�A(m)��(m)
k �� � 1, �(m)

k �K� 0, µ(m)
k �K̄� 0,

MVY k = 0, . . . , N, m = 1, . . . ,M,

Distance Reformulation

12

Collision free motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

min
x,u,�,µ

N�

k=0

�(xk , uk)

Z�[� x0 = x(0), xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

�g�µ(m)
k + (A(m) t(xk)� b(m))��(m)

k > 0,

G�µ(m)
k + R(xk)�A(m)��(m)

k = 0,

�A(m)��(m)
k �� � 1, �(m)

k �K� 0, µ(m)
k �K̄� 0,

MVY k = 0, . . . , N, m = 1, . . . ,M,

Distance Reformulation

12

Collision free motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two
sets is larger than a distance is equivalent to the following constraints:

Signed Distance reformulation

13

Theorem 4: Full-sized signed distance reformulation

O = {y � Rn : Ay �K b}
E(xk) = R(x)B+ t(x)

d � R
KPZ[(E(x),O) > dTPU �� �� �K� 0, µ �K̄� 0:
� g�µ+ (At(x)� b)�� > d, G�µ+ R(x)�A�� = 0, �A���� = 1

‣ Proof sketch:
- Reformulate penetration of the two sets as

- Where is the Minkowski difference
- Minkowski difference of two convex sets is convex
- Minkowski difference only contains 0 if sets overlap

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two
sets is larger than a distance is equivalent to the following constraints:

Signed Distance reformulation

13

Theorem 4: Full-sized signed distance reformulation

O = {y � Rn : Ay �K b}
E(xk) = R(x)B+ t(x)

d � R
KPZ[(E(x),O) > dTPU �� �� �K� 0, µ �K̄� 0:
� g�µ+ (At(x)� b)�� > d, G�µ+ R(x)�A�� = 0, �A���� = 1

WLU(E(x),O) = WLU(0,O� E(x))
O� E(x) := {o � e : o � O, e � E(x)}

‣ Proof sketch:
- Reformulate penetration of the two sets as

- Where is the Minkowski difference
- Minkowski difference of two convex sets is convex
- Minkowski difference only contains 0 if sets overlap

- Back to point mass penetration case

If the obstacle is given by and the ego shape is a point
mass , the requirement that the distance between the two
sets is larger than a distance is equivalent to the following constraints:

Signed Distance reformulation

13

Theorem 4: Full-sized signed distance reformulation

O = {y � Rn : Ay �K b}
E(xk) = R(x)B+ t(x)

d � R
KPZ[(E(x),O) > dTPU �� �� �K� 0, µ �K̄� 0:
� g�µ+ (At(x)� b)�� > d, G�µ+ R(x)�A�� = 0, �A���� = 1

WLU(E(x),O) = WLU(0,O� E(x))
O� E(x) := {o � e : o � O, e � E(x)}

min
x,u,s,�,µ

N�

k=0

�

�(xk , uk) + � ·
M�

m=1

s(m)
k

�

Z�[� x0 = xS, xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

�g�µ(m)
k + (A(m) t(xk)� b(m))��(m)

k > �s(m)
k ,

G�µ(m)
k + R(xk)�A(m)��(m)

k = 0,

�A(m)��(m)
k �� = 1,

s(m)
k � 0, �(m)

k �K� 0, µ(m)
k �K̄� 0,

MVY k = 0, . . . , N, m = 1, . . . ,M.

Distance Reformulation

14

Minimum penetration motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

min
x,u,s,�,µ

N�

k=0

�

�(xk , uk) + � ·
M�

m=1

s(m)
k

�

Z�[� x0 = xS, xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

�g�µ(m)
k + (A(m) t(xk)� b(m))��(m)

k > �s(m)
k ,

G�µ(m)
k + R(xk)�A(m)��(m)

k = 0,

�A(m)��(m)
k �� = 1,

s(m)
k � 0, �(m)

k �K� 0, µ(m)
k �K̄� 0,

MVY k = 0, . . . , N, m = 1, . . . ,M.

Distance Reformulation

14

Minimum penetration motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

Quadcopert motion planning

15

Quadcopert motion planning

15

Problem definition
‣ Model:

- Full 12-state quadcopter model - rotor speeds as inputs [Meilinger]

‣ Input-state constraints:
- Bounds on states and inputs

‣ Cost:
- tradeoff between minimum time and minimum input

16

J = q�F +
N�1�

k=0

uTk Ruk

Problem definition
‣ Model:

- Full 12-state quadcopter model - rotor speeds as inputs [Meilinger]

‣ Input-state constraints:
- Bounds on states and inputs

‣ Cost:
- tradeoff between minimum time and minimum input

- minimum time is achieved by optimizing over sampling time ->

16

J = q�F +
N�1�

k=0

uTk Ruk

xk+1 = xk + TVW[f̃ (xk , uk)

�F = NTVW[

Problem definition
‣ Model:

- Full 12-state quadcopter model - rotor speeds as inputs [Meilinger]

‣ Input-state constraints:
- Bounds on states and inputs

‣ Cost:
- tradeoff between minimum time and minimum input

- minimum time is achieved by optimizing over sampling time ->

16

J = q�F +
N�1�

k=0

uTk Ruk

xk+1 = xk + TVW[f̃ (xk , uk)

�F = NTVW[

J = qNTVW[+
N�1�

k=0

uTk RukKPZ[(E(x),O) > dTPU �� �� �K� 0: (Ap � b)�� > dTPU, �A���� � 1

Problem definition
‣ Model:

- Full 12-state quadcopter model - rotor speeds as inputs [Meilinger]

‣ Input-state constraints:
- Bounds on states and inputs

‣ Cost:
- tradeoff between minimum time and minimum input

- minimum time is achieved by optimizing over sampling time ->

‣ Obstacle avoidance:
- Point mass ego shape with a safety distance to consider size of the quadcopter

- Obstacles are five 3D boxes
16

J = q�F +
N�1�

k=0

uTk Ruk

xk+1 = xk + TVW[f̃ (xk , uk)

�F = NTVW[

J = qNTVW[+
N�1�

k=0

uTk RukKPZ[(E(x),O) > dTPU �� �� �K� 0: (Ap � b)�� > dTPU, �A���� � 1

Results
‣ Warm start using shortest path problem

- A* is used to solve the 3-D shortest path problem
- A* also determines horizon length N
- Zero velocities and angles warm start

‣ IPOPT as NLP solver and Julia/JuMP as interface
‣ Solved for 36 different final positions

- N between 100 - 129, Ts limited between 0.125 and 0.375 s

17

0 5 10
Y [m]

0
2
4
6

Z
[m

]

10
20
30
40

0 5 10
Y [m]

0
2
4
6

Z
[m

]

10
20
30
40
50

distance signed distance

Results
‣ Warm start using shortest path problem

- A* is used to solve the 3-D shortest path problem
- A* also determines horizon length N
- Zero velocities and angles warm start

‣ IPOPT as NLP solver and Julia/JuMP as interface
‣ Solved for 36 different final positions

- N between 100 - 129, Ts limited between 0.125 and 0.375 s

18

8\HKJVW[LY�UH]PNH[PVU TPU TH_ TLHU

^HYT�Z[HY[��(�� ������ Z ������ Z ������ Z
KPZ[HUJL�MVYT\SH[PVU ������ Z ��� ��� Z ��� ��� Z
ZPNULK�KPZ[HUJL�MVYT\SH[PVU ������ Z � ����� Z ���� �� Z

Autonomous parking

19

‣ Considering ego-shape is necessary
- Approximate ego-shape as a ball leads to an infeasible problem

Autonomous parking

19

‣ Considering ego-shape is necessary
- Approximate ego-shape as a ball leads to an infeasible problem

Problem definition
‣ Model:

- 4-state kinematic car model
- steering and acceleration input

‣ Input-state constraints:
- Bounds on steering δ, steering rate Δδ, and acceleration a

20

δ

Y

X

v
φ

L

Ẋ = v cos(�)

Ẏ = v sin(�)

�̇ =
v tan(�)

L
v̇ = a

Problem definition
‣ Model:

- 4-state kinematic car model
- steering and acceleration input

‣ Input-state constraints:
- Bounds on steering δ, steering rate Δδ, and acceleration a

‣ Cost:
- tradeoff between minimum time, minimum input, and minimum input rate

20

δ

Y

X

v
φ

L

Ẋ = v cos(�)

Ẏ = v sin(�)

�̇ =
v tan(�)

L
v̇ = a

J = qNTVW[+
N�1�

k=0

uTk Ruk + �u
T
k R��uk

Problem definition
‣ Model:

- 4-state kinematic car model
- steering and acceleration input

‣ Input-state constraints:
- Bounds on steering δ, steering rate Δδ, and acceleration a

‣ Cost:
- tradeoff between minimum time, minimum input, and minimum input rate

‣ Obstacle avoidance:
- Box shape for car

- 5 half-spaces for reverse and 6 for parallel parking

20

δ

Y

X

v
φ

L

Ẋ = v cos(�)

Ẏ = v sin(�)

�̇ =
v tan(�)

L
v̇ = a

J = qNTVW[+
N�1�

k=0

uTk Ruk + �u
T
k R��uk

Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

21

Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21

Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21

Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21

Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21

Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21

Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21

Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21

Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21

Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21

Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21

-10 -5 0 5 10
X [m]

0

2

4

6

8

10

12

Y
[m

]

-10 -5 0 5 10
X [m]

0

2

4

6

8

10

12

Y
[m

]

Results
‣ Warm start using Hybrid-A*

- Hybrid A* also determines horizon length N
- Warm-starts for velocity, inputs, and obstacle dual-multipliers

‣ IPOPT as NLP solver and Julia/JuMP as interface
‣ Solved for 84 different starting positions

22

di
st

an
ce

si
gn

ed

di
st

an
ce

-10 -5 0 5 10
X [m]

0

5

10

Y
[m

]

0

1

2

3

4

5

-10 -5 0 5 10
X [m]

0

5

10

Y
[m

]

0

1

2

3

4

5

-10 -5 0 5 10
X [m]

0

5

10

Y
[m

]

0

1

2

3

4

5

-10 -5 0 5 10
X [m]

0

5

10
Y

[m
]

0

1

2

3

4

5

reverse parallel

Results
‣ Warm start using Hybrid-A*

- Hybrid A* also determines horizon length N
- Warm-starts for velocity, inputs, and obstacle dual-multipliers

‣ IPOPT as NLP solver and Julia/JuMP as interface
‣ Solved for 84 different starting positions

23

TPU TH_ TLHU

9L]LYZL�7HYRPUN
^HYT�Z[HY[��/`IYPK�(�� ������ Z ������ Z ���� � Z
KPZ[HUJL�MVYT\SH[PVU ������ Z ������ Z ������ Z
ZPNULK�KPZ[HUJL�MVYT\SH[PVU ������ Z ������ Z ������ Z

7HYHSSLS�7HYRPUN
^HYT�Z[HY[��/`IYPK�(�� ������ Z ������ Z ������ Z
KPZ[HUJL�MVYT\SH[PVU ������ Z �� ��� Z ������ Z
ZPNULK�KPZ[HUJL�YLMVYT\SH[PVU ������ Z ������ Z ������ Z

Driveability
‣ Is it worth to use this approach or is a Hybrid A* good enough

24

-10 -5 0 5 10
X [m]

0

2

4

6

8

10

12

Y
[m

]

-10 -5 0 5 10
X [m]

0

2

4

6

8

10

12

Y
[m

]

Driveability
‣ Is it worth to use this approach or is a Hybrid A* good enough

24

-10 -5 0 5 10
X [m]

0

2

4

6

8

10

12

Y
[m

]

-10 -5 0 5 10
X [m]

0

2

4

6

8

10

12

Y
[m

]

‣ How well can a path following controller follow the trajectory
- Velocity P-Controller based on position along the path
- Lateral path-following LQR

ė =

�
0 v
0 0

�
e +

�
0
v
L

�
�, � = �Ke + �MM(s)

Driveability
‣ Is it worth to use this approach or is a Hybrid A* good enough

24

-10 -5 0 5 10
X [m]

0

2

4

6

8

10

12

Y
[m

]

-10 -5 0 5 10
X [m]

0

2

4

6

8

10

12

Y
[m

]

‣ How well can a path following controller follow the trajectory
- Velocity P-Controller based on position along the path
- Lateral path-following LQR

ė =

�
0 v
0 0

�
e +

�
0
v
L

�
�, � = �Ke + �MM(s)

‣ Hybrid A* neglects longitudinal dynamics and rate constraints
- Accurate path following is only possible with a slow velocity profile

Driveability

25

‣ Reduce maneuvre time by over 50%, while improving the accuracy
- OBCA trajectory considers full model and actuator limits,
- resulting in smooth and easy to follow trajectories
- gives accurate feedforward terms (no heuristic needed as for hybrid A*),

TPU TH_ TLHU

9L]LYZL�7HYRPUN
4HUL\]LY�[PTL�/`IYPK�(� ��� Z ��� Z ���� Z
4HUL\]LY�[PTL�6)*(���� Z ��� Z ���� Z
4H_�[YHJRPUN�LYYVY�/`IYPK�(� �����T �����T ���� T
TH_�[YHJRPUN�LYYVY�6)*(�����T �����T �����T

7HYHSSLS�7HYRPUN
4HUL\]LY�[PTL�/`IYPK�(� ���� Z ���� Z ���� Z
4HUL\]LY�[PTL�6)*(���� Z ���� Z � �� Z
4H_�[YHJRPUN�LYYVY�/`IYPK�(� �����T �����T �����T
4H_�KL]PH[PVU�6)*(�����T �����T �����T

Driveability

26

‣ Reduce maneuvre time by 50%, while improving the accuracy
- OBCA trajectory considers full model and actuator limits,
- resulting in smooth and easy to follow trajectories
- gives accurate feedforward terms (no heuristic needed as for hybrid A*),

Driveability

26

‣ Reduce maneuvre time by 50%, while improving the accuracy
- OBCA trajectory considers full model and actuator limits,
- resulting in smooth and easy to follow trajectories
- gives accurate feedforward terms (no heuristic needed as for hybrid A*),

Conclusion
‣ Novel method for optimization-based collision avoidance
‣ Results in smooth and easy to implement constraints
‣ Showed the efficiency of the approach on a quadcopter and

autonomous parking example
‣ On of the big challenges is finding a good warm-start

27

Truck parking - Questions

28

Truck parking - Questions

28

Parallel Parking

29

Parallel Parking

29

