
Optimization-Based Collision 
Avoidance

Institut für Automatik

Automatic Control Laboratory

Alexander Liniger

George Zhang and Francesco Borrelli

IfA Coffee Talk

-10 -5 0 5 10
X [m]

0

2

4

6

8

10

12

Y 
[m

]



Motivation

2

Start

Finish



Motivation

2

Start

Finish



Motivation

2

Start

Finish
Obstacle 1

Obstacle 2



Motivation

2

Start

Finish
Obstacle 1

Obstacle 2



Motivation

3

Start

Finish

Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)



Motivation

3

Start

Finish

Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

min
x,u

N�

k=0

�(xk , uk)

Z�[� x0 = xS, xN+1 = xF
xk+1 = f (xk , uk),
h(xk , uk) � 0,
E(xk) �O(m) = �,

�
�

�
k = 0, . . . , N,
m = 1, . . . ,M,

Motion planning optimization problem

Cost

Start and finish state
Dynamics
Collision constraints



Motivation

3

Start

Finish

Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

min
x,u

N�

k=0

�(xk , uk)

Z�[� x0 = xS, xN+1 = xF
xk+1 = f (xk , uk),
h(xk , uk) � 0,
E(xk) �O(m) = �,

�
�

�
k = 0, . . . , N,
m = 1, . . . ,M,

Motion planning optimization problem

Cost

Start and finish state
Dynamics
Collision constraints



Signed distance

4

ZK(E(x),O) := KPZ[(E(x),O)� WLU(E(x),O)

E(x) �O = � � ZK(E(x),O) > 0

Signed distance

dist > 0  
pen = 0

dist = 0  
pen > 0

Collision constraints reformulation 



Signed distance

4

O(m) = {y � Rn : A(m)y �K b(m)}‣ Obstacles
- Convex obstacles

ZK(E(x),O) := KPZ[(E(x),O)� WLU(E(x),O)

E(x) �O = � � ZK(E(x),O) > 0

Signed distance

dist > 0  
pen = 0

dist = 0  
pen > 0

Collision constraints reformulation 



Signed distance

4

O(m) = {y � Rn : A(m)y �K b(m)}‣ Obstacles
- Convex obstacles
- Union of convex sets can well 

approximate non-convex sets 

ZK(E(x),O) := KPZ[(E(x),O)� WLU(E(x),O)

E(x) �O = � � ZK(E(x),O) > 0

Signed distance

dist > 0  
pen = 0

dist = 0  
pen > 0

Collision constraints reformulation 



Signed distance

4

O(m) = {y � Rn : A(m)y �K b(m)}‣ Obstacles
- Convex obstacles
- Union of convex sets can well 

approximate non-convex sets 

‣ Ego shape

ZK(E(x),O) := KPZ[(E(x),O)� WLU(E(x),O)

E(x) �O = � � ZK(E(x),O) > 0

Signed distance

dist > 0  
pen = 0

dist = 0  
pen > 0

Collision constraints reformulation 



Signed distance

4

O(m) = {y � Rn : A(m)y �K b(m)}‣ Obstacles
- Convex obstacles
- Union of convex sets can well 

approximate non-convex sets 

‣ Ego shape
- Point mass E(xk) = p(xk)

ZK(E(x),O) := KPZ[(E(x),O)� WLU(E(x),O)

E(x) �O = � � ZK(E(x),O) > 0

Signed distance

dist > 0  
pen = 0

dist = 0  
pen > 0

Collision constraints reformulation 



Signed distance

4

O(m) = {y � Rn : A(m)y �K b(m)}‣ Obstacles
- Convex obstacles
- Union of convex sets can well 

approximate non-convex sets 

‣ Ego shape
- Point mass

- Full-sized E(xk) = R(xk)B+ t(xk), B := {y : Gy �K̄ g}

E(xk) = p(xk)

ZK(E(x),O) := KPZ[(E(x),O)� WLU(E(x),O)

E(x) �O = � � ZK(E(x),O) > 0

Signed distance

dist > 0  
pen = 0

dist = 0  
pen > 0

Collision constraints reformulation 



Point mass collision avoidance

5

Smooth collision constraint reformulation

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)



‣ Point mass ego shape                        -> extract position from state

Point mass collision avoidance

5

Smooth collision constraint reformulation

E(xk) = p(xk)

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)



‣ Point mass ego shape                        -> extract position from state
‣ When is it “easy” to handle the collision constraint                      ?

Point mass collision avoidance

5

Smooth collision constraint reformulation

E(xk) = p(xk)

E(x) �O = � � ZK(E(x),O) > 0

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)



‣ Point mass ego shape                        -> extract position from state
‣ When is it “easy” to handle the collision constraint                      ?

- Avoiding a circle/ellipse
- Polytopes + linear dynamics -> mixed integer or disjunctive programming 

Point mass collision avoidance

5

Smooth collision constraint reformulation

E(xk) = p(xk)

o(p(xk)� o)2 � d2
E(x) �O = � � ZK(E(x),O) > 0

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

(p(xk)� o)2 � r2



‣ Point mass ego shape                        -> extract position from state
‣ When is it “easy” to handle the collision constraint                      ?

- Avoiding a circle/ellipse
- Polytopes + linear dynamics -> mixed integer or disjunctive programming 

‣ We show that the collision constraint can be reformulated as a smooth but non-
convex constraint by reformulating the distance and signed distance

Point mass collision avoidance

5

Smooth collision constraint reformulation

E(x) �O = � � ZK(E(x),O) > 0E(x) �O = � � KPZ[(E(x),O) > 0

E(xk) = p(xk)

o(p(xk)� o)2 � d2
E(x) �O = � � ZK(E(x),O) > 0

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

(p(xk)� o)2 � r2



If the obstacle is given by                                             and the ego shape is a point 
mass                 , the requirement that the distance between the two sets is larger 
than a safety distance                is equivalent to the following constraints: 

Distance reformulation

6

KPZ[(E(x),O) > dTPU �� �� �K� 0: (Ap � b)�� > dTPU, �A���� � 1

Theorem 1: Distance reformulation

dTPU � 0

O = {y � Rn : Ay �K b}
E(x) = p



‣ Proof sketch:
-                      is given by the following convex program:

If the obstacle is given by                                             and the ego shape is a point 
mass                 , the requirement that the distance between the two sets is larger 
than a safety distance                is equivalent to the following constraints: 

Distance reformulation

6

KPZ[(E(x),O) > dTPU �� �� �K� 0: (Ap � b)�� > dTPU, �A���� � 1

KPZ[(E(x),O) = min
t
{�t� : A(E(x) + t) �K b}

Theorem 1: Distance reformulation

dTPU � 0

O = {y � Rn : Ay �K b}
E(x) = p

E(x) �O = � � KPZ[(E(x),O) > 0

p + t

E(x) = p



‣ Proof sketch:
-                      is given by the following convex program:

- By strong duality the dual is also equal to the distance

If the obstacle is given by                                             and the ego shape is a point 
mass                 , the requirement that the distance between the two sets is larger 
than a safety distance                is equivalent to the following constraints: 

Distance reformulation

6

KPZ[(E(x),O) > dTPU �� �� �K� 0: (Ap � b)�� > dTPU, �A���� � 1

KPZ[(E(x),O) = min
t
{�t� : A(E(x) + t) �K b}

KPZ[(E(x),O) = max
�

�
(AE(x)� b)�� : �A���� � 1, � �K� 0

�

Theorem 1: Distance reformulation

dTPU � 0

O = {y � Rn : Ay �K b}
E(x) = p

E(x) �O = � � KPZ[(E(x),O) > 0

p + t

E(x) = p



‣ Proof sketch:
-                      is given by the following convex program:

- By strong duality the dual is also equal to the distance

- If there exists a λ which fulfils these conditions the distance constraint is fulfilled

If the obstacle is given by                                             and the ego shape is a point 
mass                 , the requirement that the distance between the two sets is larger 
than a safety distance                is equivalent to the following constraints: 

Distance reformulation

6

KPZ[(E(x),O) > dTPU �� �� �K� 0: (Ap � b)�� > dTPU, �A���� � 1

KPZ[(E(x),O) = min
t
{�t� : A(E(x) + t) �K b}

KPZ[(E(x),O) = max
�

�
(AE(x)� b)�� : �A���� � 1, � �K� 0

�

Theorem 1: Distance reformulation

dTPU � 0

O = {y � Rn : Ay �K b}
E(x) = p

E(x) �O = � � KPZ[(E(x),O) > 0

p + t

E(x) = p



Distance Reformulation

7

Collision free motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

min
x,u,�

N�

k=0

�(xk , uk)

Z�[� x0 = xS, xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)k > 0,

�A(m)��(m)k �� � 1, �(m)k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)



Distance Reformulation

7

Collision free motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

min
x,u,�

N�

k=0

�(xk , uk)

Z�[� x0 = xS, xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)k > 0,

�A(m)��(m)k �� � 1, �(m)k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)



Distance Reformulation

7

Collision free motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

min
x,u,�

N�

k=0

�(xk , uk)

Z�[� x0 = xS, xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)k > 0,

�A(m)��(m)k �� � 1, �(m)k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,

If an appropriate cone    is used, the 

reformulation is smooth (but nonlinear) 

Easy to add as a constraint in NLP solver
K

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)



Distance Reformulation

7

Collision free motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

min
x,u,�

N�

k=0

�(xk , uk)

Z�[� x0 = xS, xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)k > 0,

�A(m)��(m)k �� � 1, �(m)k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,

If an appropriate cone    is used, the 

reformulation is smooth (but nonlinear) 

Easy to add as a constraint in NLP solver
K

No information when overlapping

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)



If the obstacle is given by                                             and the ego shape is a point 
mass                 , the requirement that the distance between the two sets is larger 
than a safety distance           is equivalent to the following constraints: 

Signed distance reformulation

8

Theorem 2: Signed distance reformulation

O = {y � Rn : Ay �K b}
E(x) = p

d � R

ZK(E(x),O) > d �� �� �K� 0: (Ap � b)�� > d, �A���� = 1



‣ Proof sketch:
- Penetration is non-convex -> strong duality does not hold!

If the obstacle is given by                                             and the ego shape is a point 
mass                 , the requirement that the distance between the two sets is larger 
than a safety distance           is equivalent to the following constraints: 

Signed distance reformulation

8

Theorem 2: Signed distance reformulation

O = {y � Rn : Ay �K b}
E(x) = p

d � R

ZK(E(x),O) > d �� �� �K� 0: (Ap � b)�� > d, �A���� = 1



‣ Proof sketch:
- Penetration is non-convex -> strong duality does not hold!
- Reformulate the penetration as the minimum  

distance from any supporting hyperplane to                 , 

If the obstacle is given by                                             and the ego shape is a point 
mass                 , the requirement that the distance between the two sets is larger 
than a safety distance           is equivalent to the following constraints: 

Signed distance reformulation

8

Theorem 2: Signed distance reformulation

O = {y � Rn : Ay �K b}
E(x) = p

E(x) = p

d � R

p

ZK(E(x),O) > d �� �� �K� 0: (Ap � b)�� > d, �A���� = 1



‣ Proof sketch:
- Penetration is non-convex -> strong duality does not hold!
- Reformulate the penetration as the minimum  

distance from any supporting hyperplane to                 , 
- Allows to “recover” convexity and thus strong duality

If the obstacle is given by                                             and the ego shape is a point 
mass                 , the requirement that the distance between the two sets is larger 
than a safety distance           is equivalent to the following constraints: 

Signed distance reformulation

8

Theorem 2: Signed distance reformulation

O = {y � Rn : Ay �K b}
E(x) = p

E(x) = p

WLU(E(x),O) < pTH_ �� �� �K� 0: (b � Ap)�� < pTH_, �A���� = 1

d � R

p

ZK(E(x),O) > d �� �� �K� 0: (Ap � b)�� > d, �A���� = 1



‣ Proof sketch:
- Penetration is non-convex -> strong duality does not hold!
- Reformulate the penetration as the minimum  

distance from any supporting hyperplane to                 , 
- Allows to “recover” convexity and thus strong duality

- Signed distance is                      if separated and                          if overlapping

If the obstacle is given by                                             and the ego shape is a point 
mass                 , the requirement that the distance between the two sets is larger 
than a safety distance           is equivalent to the following constraints: 

Signed distance reformulation

8

Theorem 2: Signed distance reformulation

O = {y � Rn : Ay �K b}
E(x) = p

E(x) = p

WLU(E(x),O) < pTH_ �� �� �K� 0: (b � Ap)�� < pTH_, �A���� = 1

�WLU(E(x),O)KPZ[(E(x),O)

d � R

p

ZK(E(x),O) > d �� �� �K� 0: (Ap � b)�� > d, �A���� = 1



Signed distance Reformulation

9

Minimum penetration motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

min
x,u,s,�

N�

k=0

�

�(xk , uk) + � ·
M�

m=1

s(m)
k

�

Z�[� x0 = x(0), xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)
k > �s(m)

k ,

�A(m)��(m)
k �� = 1,

s(m)
k � 0, �(m)

k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,



Signed distance Reformulation

9

Minimum penetration motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

min
x,u,s,�

N�

k=0

�

�(xk , uk) + � ·
M�

m=1

s(m)
k

�

Z�[� x0 = x(0), xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)
k > �s(m)

k ,

�A(m)��(m)
k �� = 1,

s(m)
k � 0, �(m)

k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,



Signed distance Reformulation

9

Minimum penetration motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

min
x,u,s,�

N�

k=0

�

�(xk , uk) + � ·
M�

m=1

s(m)
k

�

Z�[� x0 = x(0), xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)
k > �s(m)

k ,

�A(m)��(m)
k �� = 1,

s(m)
k � 0, �(m)

k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,

Possible to use soft constraints 

Solver has information about penetration



Signed distance Reformulation

9

Minimum penetration motion planning optimization problem

Cost

Start and finish state
Dynamics

Collision constraints

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

min
x,u,s,�

N�

k=0

�

�(xk , uk) + � ·
M�

m=1

s(m)
k

�

Z�[� x0 = x(0), xN+1 = xF ,
xk+1 = f (xk , uk), h(xk , uk) � 0,

(A(m) pk � b(m))��(m)
k > �s(m)

k ,

�A(m)��(m)
k �� = 1,

s(m)
k � 0, �(m)

k �K� 0,
MVY k = 0, . . . , N, m = 1, . . . ,M,

Possible to use soft constraints 

Solver has information about penetration

Additional non-convex constraint



‣ Full-sized ego shape: ego shape is a rotated and translated convex set

Full-sized collision avoidance

10

Smooth collision constraint reformulation

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)



‣ Full-sized ego shape: ego shape is a rotated and translated convex set

Full-sized collision avoidance

10

Smooth collision constraint reformulation

E(xk) = R(xk)B+ t(xk), B := {y : Gy �K̄ g}

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)



‣ Full-sized ego shape: ego shape is a rotated and translated convex set

‣ When is it “easy” to handle the collision constraint                      ?
- Ego shape is a circle and obstacle is a circle or ellipse

Full-sized collision avoidance

10

Smooth collision constraint reformulation

E(xk) = R(xk)B+ t(xk), B := {y : Gy �K̄ g}

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

E(x) �O = � � ZK(E(x),O) > 0



‣ Full-sized ego shape: ego shape is a rotated and translated convex set

‣ When is it “easy” to handle the collision constraint                      ?
- Ego shape is a circle and obstacle is a circle or ellipse

‣ We show that the collision constraint can be reformulated as a smooth but non-
convex constraint by reformulating the distance and signed distance

Full-sized collision avoidance

10

Smooth collision constraint reformulation

E(xk) = R(xk)B+ t(xk), B := {y : Gy �K̄ g}

Start

Finish
Obstacle 1

Obstacle 2

xk+1 = f (xk , uk)

xS

xF

h(xk , uk) � 0

O(1)

O(2)

E(xk)

E(x) �O = � � ZK(E(x),O) > 0



If the obstacle is given by                                             and the ego shape is a point 
mass                                    , the requirement that the distance between the two 
sets is larger than a distance                is equivalent to the following constraints: 

Distance reformulation

11

Theorem 3: Full-sized distance reformulation

dTPU � 0

O = {y � Rn : Ay �K b}
E(xk) = R(x)B+ t(x)

KPZ[(E(x),O) > dTPU �� �� �K� 0, µ �K̄� 0:
� g�µ+ (At(x)� b)�� > dTPU, G

�µ+ R(x)�A�� = 0, �A���� � 1



‣ Proof sketch:
-                      is given by the following convex program:

If the obstacle is given by                                             and the ego shape is a point 
mass                                    , the requirement that the distance between the two 
sets is larger than a distance                is equivalent to the following constraints: 

Distance reformulation

11

Theorem 3: Full-sized distance reformulation

dTPU � 0

O = {y � Rn : Ay �K b}

E(x) �O = � � KPZ[(E(x),O) > 0

E(xk) = R(x)B+ t(x)

KPZ[(E(x),O) > dTPU �� �� �K� 0, µ �K̄� 0:
� g�µ+ (At(x)� b)�� > dTPU, G

�µ+ R(x)�A�� = 0, �A���� � 1

KPZ[(E(x),O) = min
e,o
{�e � o� : Ao �K b, e � E(x)} o

e



‣ Proof sketch:
-                      is given by the following convex program:

- By strong duality the dual is also equal to the distance

If the obstacle is given by                                             and the ego shape is a point 
mass                                    , the requirement that the distance between the two 
sets is larger than a distance                is equivalent to the following constraints: 
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If the obstacle is given by                                             and the ego shape is a point 
mass                                    , the requirement that the distance between the two 
sets is larger than a distance           is equivalent to the following constraints: 

Signed Distance reformulation
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‣ Proof sketch:
- Reformulate penetration of the two sets as

- Where                                                               is the Minkowski difference
- Minkowski difference of two convex sets is convex
- Minkowski difference only contains 0 if sets overlap
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‣ Proof sketch:
- Reformulate penetration of the two sets as

- Where                                                               is the Minkowski difference
- Minkowski difference of two convex sets is convex
- Minkowski difference only contains 0 if sets overlap

- Back to point mass penetration case

If the obstacle is given by                                             and the ego shape is a point 
mass                                    , the requirement that the distance between the two 
sets is larger than a distance           is equivalent to the following constraints: 

Signed Distance reformulation
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Problem definition
‣ Model:

- Full 12-state quadcopter model - rotor speeds as inputs [Meilinger]

‣ Input-state constraints:
- Bounds on states and inputs

‣ Cost:
- tradeoff between minimum time and minimum input

16
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Problem definition
‣ Model:

- Full 12-state quadcopter model - rotor speeds as inputs [Meilinger]

‣ Input-state constraints:
- Bounds on states and inputs

‣ Cost:
- tradeoff between minimum time and minimum input

- minimum time is achieved by optimizing over sampling time ->

‣ Obstacle avoidance:
- Point mass ego shape with a safety distance to consider size of the quadcopter

- Obstacles are five 3D boxes
16
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Results
‣ Warm start using shortest path problem 

- A* is used to solve the 3-D shortest path problem 
- A* also determines horizon length N 
- Zero velocities and angles warm start 

‣ IPOPT as NLP solver and Julia/JuMP as interface 
‣ Solved for 36 different final positions 

- N between 100 - 129, Ts limited between 0.125 and 0.375 s 
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Results
‣ Warm start using shortest path problem 

- A* is used to solve the 3-D shortest path problem 
- A* also determines horizon length N 
- Zero velocities and angles warm start 

‣ IPOPT as NLP solver and Julia/JuMP as interface 
‣ Solved for 36 different final positions 

- N between 100 - 129, Ts limited between 0.125 and 0.375 s 
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Autonomous parking
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Problem definition
‣ Model:

- 4-state kinematic car model
- steering and acceleration input

‣ Input-state constraints:
- Bounds on steering δ, steering rate Δδ, and acceleration a

20

δ

Y

X

v
φ

L
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Problem definition
‣ Model:

- 4-state kinematic car model
- steering and acceleration input

‣ Input-state constraints:
- Bounds on steering δ, steering rate Δδ, and acceleration a

‣ Cost:
- tradeoff between minimum time, minimum input, and minimum input rate

‣ Obstacle avoidance:
- Box shape for car

- 5 half-spaces for reverse and 6 for parallel parking
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Ẏ = v sin(�)

�̇ =
v tan(�)

L
v̇ = a

J = qNTVW[ +
N�1�

k=0

uTk Ruk + �u
T
k R��uk



Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

21



Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21



Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21



Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21



Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21



Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21



Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21



Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21



Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21



Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21



Warm-Start
‣ A good warm-start is extremely important

- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

‣ Hybrid-A* with a simplified kinematic car model

21

-10 -5 0 5 10
X [m]

0

2

4

6

8

10

12

Y 
[m

]

-10 -5 0 5 10
X [m]

0

2

4

6

8

10

12

Y 
[m

]



Results
‣ Warm start using Hybrid-A* 

- Hybrid A* also determines horizon length N 
- Warm-starts for velocity, inputs, and obstacle dual-multipliers 

‣ IPOPT as NLP solver and Julia/JuMP as interface 
‣ Solved for 84 different starting positions

22

di
st

an
ce

si
gn

ed
  

di
st

an
ce

-10 -5 0 5 10
X [m]

0

5

10

Y 
[m

]

0

1

2

3

4

5

-10 -5 0 5 10
X [m]

0

5

10

Y 
[m

]

0

1

2

3

4

5

-10 -5 0 5 10
X [m]

0

5

10

Y 
[m

]

0

1

2

3

4

5

-10 -5 0 5 10
X [m]

0

5

10
Y 

[m
]

0

1

2

3

4

5

reverse parallel



Results
‣ Warm start using Hybrid-A* 

- Hybrid A* also determines horizon length N 
- Warm-starts for velocity, inputs, and obstacle dual-multipliers 

‣ IPOPT as NLP solver and Julia/JuMP as interface 
‣ Solved for 84 different starting positions
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Driveability
‣ Is it worth to use this approach or is a Hybrid A* good enough

24
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‣ How well can a path following controller follow the trajectory 
- Velocity P-Controller based on position along the path 
- Lateral path-following LQR

ė =

�
0 v
0 0

�
e +

�
0
v
L

�
�, � = �Ke + �MM(s)



Driveability
‣ Is it worth to use this approach or is a Hybrid A* good enough

24

-10 -5 0 5 10
X [m]

0

2

4

6

8

10

12

Y 
[m

]

-10 -5 0 5 10
X [m]

0

2

4

6

8

10

12

Y 
[m

]

‣ How well can a path following controller follow the trajectory 
- Velocity P-Controller based on position along the path 
- Lateral path-following LQR

ė =

�
0 v
0 0

�
e +

�
0
v
L

�
�, � = �Ke + �MM(s)

‣ Hybrid A* neglects longitudinal dynamics and rate constraints 
- Accurate path following is only possible with a slow velocity profile



Driveability
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‣ Reduce maneuvre time by over 50%, while improving the accuracy 
- OBCA trajectory considers full model and actuator limits, 
- resulting in smooth and easy to follow trajectories 
- gives accurate feedforward terms (no heuristic needed as for hybrid A*),

TPU TH_ TLHU

9L]LYZL�7HYRPUN
4HUL\]LY�[PTL�/`IYPK�(� ��� Z ��� Z ���� Z
4HUL\]LY�[PTL�6)*( ���� Z ��� Z ���� Z
4H_�[YHJRPUN�LYYVY�/`IYPK�(� �����T �����T ���� T
TH_�[YHJRPUN�LYYVY�6)*( �����T �����T �����T

7HYHSSLS�7HYRPUN
4HUL\]LY�[PTL�/`IYPK�(� ���� Z ���� Z ���� Z
4HUL\]LY�[PTL�6)*( ���� Z ���� Z � �� Z
4H_�[YHJRPUN�LYYVY�/`IYPK�(� �����T �����T �����T
4H_�KL]PH[PVU�6)*( �����T �����T �����T



Driveability

26

‣ Reduce maneuvre time by 50%, while improving the accuracy 
- OBCA trajectory considers full model and actuator limits, 
- resulting in smooth and easy to follow trajectories 
- gives accurate feedforward terms (no heuristic needed as for hybrid A*),
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‣ Reduce maneuvre time by 50%, while improving the accuracy 
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- resulting in smooth and easy to follow trajectories 
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Conclusion
‣ Novel method for optimization-based collision avoidance 
‣ Results in smooth and easy to implement constraints 
‣ Showed the efficiency of the approach on a quadcopter and 

autonomous parking example 
‣ On of the big challenges is finding a good warm-start
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Parallel Parking
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