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P Signed distance

(Signed distance

sd(E(x), Q) := dist(E(x), Q) — pen(E(x), O) @

Collision constraints reformulation

. dist > 0 dist=0
E(x)NO =0 < sd(E(x),0) >0 sen = 0 Son > 0
» Obstacles O = {y e R": AlMy <, pim}

- Convex obstacles
- Union of convex sets can well

approximate non-convex sets '

» Ego shape
- Point mass - E(xx) = p(xx)

- Fulsized (7 E(x) = R(x)B+t(x), B:={y: Gy =¢ g}
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Xer1 = Xk, Ux) @ E(xx)

h(Xk, Uk) S 0 A

Start X S

(Smooth collision constraint reformulation

» Point mass ego shape E(xx) = p(xx) -> extract position from state
» When is it “easy” to handle the collision constraint E(x) NQ = (?

- Avoiding a circle/ellipse (p(xx) — 0)? > r? (Xk) ‘

- Polytopes + linear dynamics -> mixed integer or disjunctive programming

»  We show that the collision constraint can be reformulated as a smooth but non-
convex constraint by reformulating the distance and signed distance

E(x)NO =0 & dist(E(x),0) >0 E(x)NO =0 & sd(E(x),0) >0
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(Theorem 1: Distance reformulation

If the obstacle is given by O = {y € R": Ay <k b} and the ego shape is a point
mass E(x) = p, the requirement that the distance between the two sets is larger
than a safety distance dyin = 0 is equivalent to the following constraints:

dist(E(x), Q) > dmin <= A >=x- 0: (Ap—DH)" X > dmin, |A" N[« < 1

» Proof sketch:
- dist(E(x), Q) is given by the following convex program: - E(x)=0p

dist(E(x), 0) = min{l£}: AB() + ) = b}

- By strong duality the dual is also equal to the distance
dist(E(x), Q) = mfx{(AE(x) —b) "X JATAlL €1, A =k O}

- |If there exists a A which fulfils these conditions the distance constraint is fulfilled
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p Signed distance reformulation

(Theorem 2: Signed distance reformulation

If the obstacle is given by O = {y € R": Ay <x b} and the ego shape is a point
mass [E(x) = p, the requirement that the distance between the two sets is larger
than a safety distance d € R is equivalent to the following constraints:

sd(E(x),0) >d <= Ik 0: (Ap—b)"A>d, |[ATA|l. =1
» Proof sketch:

- Penetration is non-convex -> strong duality does not hold!
- Reformulate the penetration as the minimum
distance from any supporting hyperplane to E(x) = p,

- Allows to “recover” convexity and thus strong duality
pen(E(x), Q) < pmax <= IX =x+ 0: (b—AP)"A < pmaxs |AT Al =1
- Signed distance is dist(E(x), Q) if separated and —pen(E(x), Q) if overlapping
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(Smooth collision constraint reformulation

» Full-sized ego shape: ego shape is a rotated and translated convex set
E(xk) = R(xk)B + t(xx), B:={y: Gy =g g}
» When is it “easy” to handle the collision constraint E(x) NQ = (?

- Ego shape is a circle and obstacle is a circle or ellipse

» We show that the collision constraint can be reformulated as a smooth but non-
convex constraint by reformulating the distance and signed distance
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(Theorem 4: Full-sized signed distance reformulation

If the obstacle is given by O = {y € R": Ay <x b} and the ego shape is a point
mass E(xx) = R(x)B + t(x), the requirement that the distance between the two
sets is larger than a distance d € R is equivalent to the following constraints:

dist(E(x), Q) > dmin <= IX =x+= 0, u =g+ O:
—gTu+(AX) = D) A>d,GTu+RX)TAT =0, |[ATAL. =1

» Proof sketch: —

/\\
- Reformulate penetration of the two sets as @
pen(E(x), ®) = pen(0, O — E(x)) L
- Where O — E(x) :=={o—e: 0€ O, e € E(x)} is the Minkowski difference

Minkowski difference of two convex sets is convex

Minkowski difference only contains 0 if sets overlap
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P Signed Distance reformulation

(Theorem 4: Full-sized signed distance reformulation

>

If the obstacle is given by O = {y € R": Ay <x b} and the ego shape is a point
mass E(xx) = R(x)B + t(x), the requirement that the distance between the two
sets is larger than a distance d € R is equivalent to the following constraints:

—gTu+ (At(X) = D)A>d, GTu+RX)TAT =0, |[ATAL. =1

Proof sketch:

=

- Reformulate penetration of the two sets as L

-

pen(E(x), ®) = pen(0, O — E(x))

<

o

- Where O — E(x) :={o—e: 0€ 0, e € E(x)} is the Minkowski difference

Minkowski difference of two convex sets is convex

Minkowski difference only contains 0 if sets overlap
- Back to point mass penetration case
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Xk+1 = f(Xk, Uk) ﬂ E(Xk)
h(xc, ux) < 0 A

Start X S

(Minimum penetration motion planning optimization problem

N M
min Z [Z(xk, Ug) + K - Z slgm)] Cost
XS A k=0 m=1 o
st Xo=Xs, Xyi1 = X, Start and finish state
Xk4+1 = f(Xk Uk) h(Xk le) <0, DynamiCS

- m m )
—g u(m) + (A t(x )T b ))TA('") > —5,5'")
GTul™ + R(x)TAM " \m — ¢

Collision constraints
HA(m)TAE(m)H* —1
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p Problem definition

» Model:

- Full 12-state quadcopter model - rotor speeds as inputs [Meilinger]

» Input-state constraints:
- Bounds on states and inputs

» Cost:
- tradeoff between minimum time and minimum input
N—1
J=qTFr + Z ul Ruy
k=0
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p Problem definition

» Model:

- Full 12-state quadcopter model - rotor speeds as inputs [Meilinger]

» Input-state constraints:
- Bounds on states and inputs

» Cost:

- tradeoff between minimum time and minimum input

N—1 N—1
J=q1F + Z ukTRuk <— J=qNTopt + Z ukTRuk
k=0 k=0

- minimum time is achieved by optimizing over sampling time -> Tr = NTqpt
Xk4+1 = Xk + TOptF(X/m Uy )
» Obstacle avoidance:

- Point mass ego shape with a safety distance to consider size of the quadcopter

- Obstacles are five 3D boxes
ETHz(rich i



p Results

» Warm start using shortest path problem
- A*is used to solve the 3-D shortest path problem £ ]
- A* also determines horizon length N
- Zero velocities and angles warm start : —

10
Xml ’ Y [m]

» IPOPT as NLP solver and Julia/JuMP as interface

» Solved for 36 different final positions
- N between 100 - 129, Ts limited between 0.125 and 0.375 s

[m]
L o 2N 0w A~ o oo
I L4

oL

distance signed distance
6 6
— 4 40 —4|l] oo0o0000 © 28
= 30 = 000 0000 30
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p Results

» Warm start using shortest path problem
- A*is used to solve the 3-D shortest path problem

[m]

L o 2N 0w A~ o oo
JE) 1 L4

- A* also determines horizon length N
- Zero velocities and angles warm start

» |POPT as NLP solver and Julia/JuMP as interface

» Solved for 36 different final positions
- N between 100 - 129, Ts limited between 0.125 and 0.375 s

Quadcopter navigation min max mean
warm start (A*) 0.5724s 2.8157s 1.6207 s
distance formulation 4.6806s 47.9762s 14.9716s

signed distance formulation 4.7638s 59.1031s 14.3962s
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P Autonomous parking

Y [m]

0

3x real-time
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0
X [m]

» Considering ego-shape is necessary
- Approximate ego-shape as a ball leads to an infeasible problem
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- Approximate ego-shape as a ball leads to an infeasible problem

ETH:z(rich

10




p Problem definition

» Model: X = vcos(p)
- 4-state kinematic car model Y = vsin(p)
- steering and acceleration input O = vtan(o)
L
V=a

» Input-state constraints:
- Bounds on steering 6, steering rate Ad, and acceleration a
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L
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» Input-state constraints:
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» Cost:
- tradeoff between minimum time, minimum input, and minimum input rate
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p Problem definition

» Model: X = vcos(p)
- 4-state kinematic car model Y = vsin(p)
- steering and acceleration input O = vtan(o)
L
V=a

» Input-state constraints:
- Bounds on steering 6, steering rate Ad, and acceleration a

» Cost:
- tradeoff between minimum time, minimum input, and minimum input rate

N—1
J= C]/\/Topt + Z LIZ_RU/( + AUZRAAUK
k=0

» Obstacle avoidance:
- Box shape for car

- b half-spaces for reverse and 6 for parallel parking
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p \Warm-Start

» A good warm-start is extremely important
- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute
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p \Warm-Start

» A good warm-start is extremely important
- Warm-start should avoid obstacles, and
- Fulfil the non-holonomic dynamics of the car
- But also be fast to compute

» Hybrid-A* with a simplified kinematic car model

Y [m]

Y [m]

0
X [m]

ETHzurich ifs



p Results

» Warm start using Hybrid-A*

- Hybrid A* also determines horizon length N

- Warm-starts for velocity, inputs, and obstacle dual-multipliers

» |POPT as NLP solver and Julia/JuMP as interface

» Solved for 84 different starting positions

distance
Y [m]

signed
distance
Y [m]
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p Results

» Warm start using Hybrid-A*
- Hybrid A* also determines horizon length N

- Warm-starts for velocity, inputs, and obstacle dual-multipliers

» |POPT as NLP solver and Julia/JuMP as interface

» Solved for 84 different starting positions

ETH:z(rich

min max mean

Reverse Parking

warm start (Hybrid A*) 0.08315s 3.2230s 0.5491s
distance formulation 0.2111s 2.7166s 0.6046s
signed distance formulation 0.3200s 4.4840s 1.0344s
Parallel Parking

warm start (Hybrid A*) 0.0421s 2.4766s 0.3012s
distance formulation 0.2561s 3.9885s 0.8682s
signed distance reformulation 0.3850s 6.7266s 1.6703s




> Driveabllity

» s it worth to use this approach or is a Hybrid A* good enough
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> Driveabllity

» s it worth to use this approach or is a Hybrid A* good enough
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» How well can a path following controller follow the trajectory
- Velocity P-Controller based on position along the path
- Lateral path-following LQR
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> Driveabllity

» s it worth to use this approach or is a Hybrid A* good enough
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» How well can a path following controller follow the trajectory
- Velocity P-Controller based on position along the path
- Lateral path-following LQR

o |-

-10 -5

6= [8 g] e+ H 5, 6= —Ke+84(s)

L

» Hybrid A* neglects longitudinal dynamics and rate constraints
- Accurate path following is only possible with a slow velocity profile
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> Driveabllity

» Reduce maneuvre time by over 50%, while improving the accuracy
- OBCA trajectory considers full model and actuator limits,
- resulting in smooth and easy to follow trajectories
- gives accurate feedforward terms (no heuristic needed as for hybrid A%),

ETH:z(rich

min max mean
Reverse Parking
Maneuver time Hybrid A* 36.95s 75.9s 55.2s
Maneuver time OBCA 14.1s 34.9s 24.2s
Max tracking error Hybrid A 0.005m 0.120m 0.069m
max tracking error OBCA 0.038m 0.088m 0.058m
Parallel Parking
Maneuver time Hybrid A* 51.1s 131.9s 86.5s
Maneuver time OBCA 17.5s 67.4s 39.6s
Max tracking error Hybrid A*  0.037/m 0.145m 0.086m
Max deviation OBCA 0.050m 0.1833m 0.074m




> Driveabllity

» Reduce maneuvre time by 50%, while improving the accuracy

- OBCA trajectory considers full model and actuator limits,

- resulting in smooth and easy to follow trajectories
- gives accurate feedforward terms (no heuristic needed as for hybrid A%),
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> Driveabllity

» Reduce maneuvre time by 50%, while improving the accuracy

- OBCA trajectory considers full model and actuator limits,

- resulting in smooth and easy to follow trajectories
- gives accurate feedforward terms (no heuristic needed as for hybrid A%),
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p Conclusion

» Novel method for optimization-based collision avoidance
» Results in smooth and easy to implement constraints

» Showed the efficiency of the approach on a quadcopter and
autonomous parking example

» On of the big challenges is finding a good warm-start
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b Truck parking - Questions
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» Parallel Parking

3x real-time
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