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Abstract

Traditional vehicles are designed to be inherently stable. 
This is typically obtained by imposing a large positive 
Static Margin (SM). The main drawbacks of this approach 

are the resulting understeering behaviour of the vehicle and, 
often, a decrease in peak lateral grip due to oversized rear tire 
characteristics. On the other hand, a lower SM can cause a 
greater time delay in the vehicle’s response which hardens the 
control of a vehicle at limit handling for a human being. By 
introducing advanced autonomous driving features into future 
vehicles, the human factor can be excluded in limit handling 
manoeuvers (e.g. obstacle avoidance occurrences) and, conse-
quently, the need for a high SM (i.e. high controllability for 
human drivers) can be avoided. Therefore, it could be possible 
to exploit the passive vehicle dynamics and enhance the perfor-
mance, both in terms of peak grip and transient response.

The goal of this paper is to explore if a decrease in SM can 
lead to a performance advantage on an obstacle avoidance 
manoeuver when the vehicle is driven by a robotic controller. 
This is achieved by analyzing the behavior of various vehicle 
models with different SMs and peak lateral acceleration on a 
non-standard double lane change manoeuver. After having 
characterized the dynamic response of the various models in 
both steady-state and unsteady-state, several tests are run on 
a Driver-in-Motion (DiM) dynamic driving simulator driven 
by human drivers. The same tests are run again in a Model-in-
the-Loop (MiL) simulation where the vehicle is controlled by 
means of a Nonlinear Model Predictive Control (NMPC). The 
results show that the robotic controller outperforms a human 
driver and poses interesting design challenges for 
autonomous vehicles.

Introduction

Commercial vehicles are typically designed to be stable. 
Consequently, these tend to have an understeering 
characteristic (under steady-state and linear tire range 

assumptions). These features are desired since they tend to 
make the vehicle safer and less prone to loss of control when 
external perturbations are applied. Additionally, under-
steering vehicles are more intuitive to drive since counter 
steering manoeuvers are generally not required. It is a well-
known fact that understeering vehicles tend to saturate the 
front tires before the rear ones, thus decreasing the overall 
attainable peak lateral acceleration. Also, most of these 
vehicles tend to become unstable at higher accelerations  
([1, 2, 3]). Over the last decades, many researchers have worked 
on active systems which allow to stabilize the vehicle [4]. Some 
of the first studies were by Bosch; their systems aim to stabilize 
a car in critical conditions driven by a human. The most 
important ones are the Vehicle Dynamics Control (VDC) 
System of Bosch [5] and the Electronic Stability Program 

(ESP) [6]. More recently many more types of control systems 
have been used to improve the vehicle stability considering 
also the influence of the driver as an external disturbance by 
means of robust control techniques [7]. Other types of vehicle 
stability controllers, which do not include the driver as an 
uncertainty, are based on adaptive sliding-mode [8], model 
predictive control (MPC) [9] and proportional-derivative 
control (PD) [10]. Additionally, researchers have worked on 
stability controllers considering uncertain [11] or unknown 
vehicle parameters which request prior identification [12]. 
Recently, stability has been studied for critical manoeuvers 
such as drifting ([13, 14]).

On the other hand, in the past few years, some research 
have studied how to optimize vehicle parameters to obtain 
the best performance from a vehicle considering a completely 
passive vehicle [15]. Also for active vehicles such as electric 
ones with four wheel torque vectoring, the passive vehicle 
dynamics has been analyzed to find the best configuration for 
time optimality [16]. These two works both use optimal 
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control to compute the minimum time inputs. However, both 
of these consider offline optimization and simulation. To the 
authors’ knowledge, until now nobody has studied how the 
passive vehicle dynamics can be modified with an autono-
mously controlled vehicle. With the recent development in 
autonomous vehicles, it could be possible to gain peak lateral 
grip despite the loss of open-loop stability. Some studies on 
pure vehicle stability for autonomous cars have been carried 
out recently [17].

By showing that an autonomous car can better handle 
the vehicle at its limits, the aim is to demonstrate that new 
horizons open up in the design of cars. Specifically, in this 
paper the effect of passive stability of a vehicle driven by a 
robotic controller rather than a human driver is analyzed. The 
goal is to show how passive stability can be drastically 
decreased for certain driving conditions. Thereby, the contri-
butions can be summarized as follows, first, the limits of some 
reference drivers due to instability are determined. Therefore, 
several vehicle models were implemented in a numerical envi-
ronment with different values of static margin and peak grip. 
These vehicles were then tested on several double lane change 
manoeuvers on a dynamic driving simulator. Second, we show 
that a nonlinear model predictive controller is able to go 
beyond the performance of the human drivers and success-
fully achieves the double lane change for all the tested models. 
Even though NMPC is an often proposed control technique 
for autonomous cars ([18, 19, 20]), in this paper we show that 
NMPC and unstable passive vehicle dynamics can be 
combined to achieve a more dynamically capable closed-loop 
system. Both a pure lateral controller and a combined lateral-
longitudinal controller were implemented.

Note that we investigate a manoeuver where low passive 
stability is an advantage, however, for other situations high 
passive stability is still needed. Thus, additional active controls 
should be addressed to actively vary the passive stability 
depending on the driving situation, e.g. active roll stiffness.

The paper is organized as follows: first the different 
vehicle models are analyzed in terms of passive vehicle 
dynamics. Following, the manoeuver is described and the 
results obtained by different human drivers are shown. Finally, 
the NMPC controller and its results are shown.

Vehicle Stability
There are many ways to analyze the stability of a vehicle and 
different methods and metrics can be found in the literature 
[21]. Since the goal of this paper is to see the influence of the 
stability on autonomous vehicles, the well-known static 
margin (SM) is used to characterize the stability (under the 
assumptions of steady-state and linear tire range) [22]. 
Considering the following parameters, the wheelbase l, the 
front and rear wheelbase l1 and l2 respectively, the front and 
rear cornering stiffnesses C1 and C2 respectively, and the 
vehicle mass m, the SM can be defined as:
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As for [23] the also well-known understeering gradient 
(UG) can be defined as:
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Hence:

 • UG SM Neutral vehicle= ® = ®0 0  

 • UG SM Understeering vehicle> ® > ®0 0  

 • UG SM Oversteering vehicle< ® < ®0 0  

An understeering vehicle is stable for all conditions whilst 
an oversteering vehicle is unstable for velocities larger than 
the so called critical velocity [24].

To analyze the influence of the vehicle stability on the 
vehicle performance when driven autonomously, various 
configurations of the same vehicle with different static margins 
were implemented in the commercial software Vi-CarRealTime 
(Vi-CRT). The only variation made between the various 
models were the tires.

Tire Merging
The nominal vehicle considered is a RWD and front steering 
car with differentiated front and rear tires. The rear tires have 
higher grip compared to the front ones. The commercial 
software uses Pacejka Magic Formula (MF) [25] to model the 
tires. Specifically, MF 6.1 was used for this work. Starting from 
the original front and rear tires, six different tire models were 
created in the following way. Every ith MF parameter pi

k  (for 
a total of N parameters) of the kth tire model was obtained by 
interpolating linearly the correspondent ith MF parameter of 
the original front pi

f  and rear pi
r  tires. For every kth tire 

model, the merging factor of the interpolant line mk (merge) 
was varied from 0 to 1 with a variation of 0.2 between model 
k and (k − 1) resulting in the following formulation:

  p m p m p m m mi
k k

i
r k

i
f k k k= - × + × £ £ - =-( ) , .1 0 1 0 21

 i N= ¼1, ,

 if m p p Original front tirek
i
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i
f= Þ = Þ1    

 if m p p Original rear tirek
i
k

i
r= Þ = Þ0    

The Pacejka parameters of the original model were found 
by fitting real data and were then used to validate the vehicle 
model with experimental results. The goal of the scaling 
process is to simulate tires with similar compound and 
construction but different size.

The results of the tire merging show that the pure longi-
tudinal and lateral behavior (Figure 1) changes both in terms 
of peak friction coefficient μpeak and cornering stiffness.

The latter is particularly true for the lateral behavior 
where also the decay after μpeak is very low.

The combined force behavior (Figure 2) also shows that 
the lateral forces are more affected by the merging operation. 
The lateral μypeak between the tire with highest grip and the 
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one with lowest is approximately 9% whilst the longitudinal 
one μxpeak is approximately only 5%.

Vehicle Configurations
With the six tire configurations, five different vehicle models 
were created. As previously mentioned, these vehicles have 
the same inertial properties, K&C characteristics and geomet-
rical features. The goal was to obtain vehicles with different 
SM values and, consequently, peak performance. The various 
tire models used for the different models are shown in Table 1.

Where the vehicle at Step00 corresponds to the vehicle 
with the original tires. The open-loop behavior of these 
vehicles was analyzed in both steady-state and transient 
manoeuvers to obtain values of SM, peak lateral acceleration 
(for steady-state manoeuvers) and time delay.

Steady-State The steady-state behavior was analyzed by 
means of a ramp steer manoeuver and both the peak lateral 
acceleration and static margin were evaluated (Figure 3). The 
reference value of the latter for the various configurations was 
taken in the linear range of the tires, at a lateral acceleration 
of 0.2 g. The static margin varies from a value of +12% of the 
original vehicle to a value of −8% for Step08. Hence, the 
vehicle goes from being stable and understeering to being 
unstable and oversteering. This is the result of the merging 
tire process.

For Step00, the front tires saturate before the rear ones. 
The latter have a higher peak friction coefficient and, therefore, 
generate a large anti-yaw moment. The result is a vehicle with 
higher yaw damping, given also the higher rear cornering 
stiffness. The opposite is valid for Step08. The front to rear 
grip distribution is in favor of the front tires and the result is 
a vehicle with low yaw damping. However, the peak lateral 
acceleration also grows since both tires are close to the limit 
of adhesion contemporarily. Consequently, the lateral accel-
eration which the vehicle can sustain is higher. The values of 
static margin and peak lateral acceleration (aypeak) of the 
various models are shown in Table 2. The variation of these 
quantities for the different models with respect to the original 
vehicle have also been indicated.

Finally, since in the various vehicle configurations the 
lateral acceleration to steering angle relationship changes, due 
to the variation of the understeering gradient, the steering 
ratio of the different models was varied.

This was done so that the perceived behavior of the vehicle 
to a human driver would be the same for all vehicle models 
in steady-state. Specifically, the steering ratio was adapted to 
obtain the same lateral acceleration (0.5 g) for a given steering 
wheel angle (Figure 4).

Step Response The transient behavior was analyzed by 
means of a step steer manoeuver. This was done with the 

 FIGURE 1  Tire merging results - pure longitudinal and 
lateral behavior.
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 FIGURE 2  Tire merging results - combined force behavior.
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TABLE 1 Vehicle configurations - tire models.

Step 00 Step 02 Step 04 Step 06 Step 08
Front tire 
mk

1 0.8 0.6 0.4 0.2

Rear tire 
mk

0 0.2 0.4 0.6 0.8
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 FIGURE 3  Steady-state open-loop response - static margin 
and peak lateral acceleration.
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TABLE 2 Steady-state results.

Step 00 Step 02 Step 04 Step 06 Step 08
aypeak [g] 0.931 0.941 0.964 0.988 1.015

Δaypeak - +1.1% +3.5% +6.1% +9.0%

SM @ 0.2g 12% 9% 3% −3% −8%

ΔSM @ 0.2g - −25% −75% −125% −167%©
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corrected steering ratio applied. With this manoeuver the 
time delay of both the lateral acceleration response and yaw 
rate response were evaluated (Figure 5). The metric to evaluate 
this was chosen as the time difference (Δt) between the peak 
value and 90% of that peak.

As the vehicle’s SM decreases, the time delay increases. 
The reason is that the stable vehicle’s larger front slip angles 
(lower cornering stiffness) are obtained mainly with larger 
toe angles, particularly in the first phase of the manoeuver.

Thus, since the toe angle variation has no delay, the rate 
of the front slip angles in the stable vehicle is greater than the 
one in the unstable vehicle. In the unstable vehicle, a larger 
contribution to the slip angle generation is given by lateral 
velocity and yaw rate. Since these are the time integral of yaw 
moment and lateral force which are caused by the slip angles 
themselves, these effects are slower than toe angle variation. 
The numeric values of this analysis are shown in Table 3. Since 
the manoeuver was performed with a forward velocity of 

20 m/s, the delays in terms of space (Δs) have been calculated 
and so have lag variations (Δlag) with respect to the 
original configuration.

Test Manoeuver
A closed-loop avoidance manoeuver was defined which 
requests both large amounts of grip and stability in order to 
evaluate the role of a human driver in comparison to a robotic 
controller. The selected manoeuver (Figure 7) is a variation of 
the classic ISO double lane change manoeuver (ISO 3888). 
However, some of the parameters were varied in order to make 
it more similar to a real world avoidance manoeuver.

The manoeuver was first tested by human drivers on the 
Driver-in-Motion dynamic driving simulator installed at the 
Advanced Vehicle Dynamics center at Danisi Engineering. 
With the human tests it was possible to define one configura-
tion of the manoeuver which exploited the limits of the refer-
ence human drivers on a highly unstable vehicle (configura-
tion Step08). This same scenario was then used for the 
autonomous vehicle.

The lane offsets and widths were chosen similar to a typical 
lane found on country roads (approximately 3.75 m) and were 
kept constant throughout the study. The manoeuver execution 
was to arrive at 100 km/h (~28 m/s) through the first gate and 
lift off the throttle after passing the last cone of the entry gate. 
From then, the only input for the driver was the steering wheel 
until the end of the manoeuver. The velocity was guaranteed 
by adapting the gear ratios so that the driver could keep full 
throttle in second gear and maintain the rpm limiter and speed. 
The lift off adds additional instability due to the vertical load 
variation. To replicate an unplanned avoidance action, the 
steering wheel was kept to zero until passing the last cone, thus 

 FIGURE 4  Steady-state open-loop response - 
understeering gradient at 20 m/s. on the left the original 
steering ratio. on the right the corrected steering ratio.
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 FIGURE 5  Step response - time delay of lateral acceleration 
and yaw rate variation with static margin.
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TABLE 3 Step response results.

Step 00 Step 02 Step 04 Step 06 Step 08
Δtay [s] 0.51 0.52 0.56 0.61 0.70

Δsay [m] 10.2 10.4 11.2 12.2 14.0

Δlagay - +1.9% +9.8% +19.6% +37.3%

Δtr [s] 0.47 0.48 0.49 0.51 0.57

Δsr [m] 9.4 9.6 9.8 10.2 11.4

Δlagr - +2.1% +4.2% +8.5% +21.3% ©
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 FIGURE 6  DiM driver simulator.
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 FIGURE 7  Test manoeuver.

©
 S

A
E 

In
te

rn
at

io
na

l

Downloaded from SAE International by Alex Liniger, Thursday, March 29, 2018



 ThE INFLuENCE oF AuToNoMouS DRIVINg oN PASSIVE VEhICLE DyNAMICS 5

© 2018 SAE International. All Rights Reserved.

eliminating the anticipation of the steering manoeuver. To 
guarantee no anticipation in the steering action, a graphical 
“blocker” of approximately 2 m of height which covers the 
entire width of the lane was added. Additionally, the direction 
of the obstacle (i.e. right or left) was completely random. The 
blocker made a big difference in the manoeuver success due 
to the impossibility to anticipate. In fact, with the introduction 
of the blocker a large delay was introduced (approximately 
0.3-0.5 s and 8.4-14.0 m at 28 m/s). The entry width a was set 
to 2.6 m while the avoidance length e was set to 43 m. The latter 
was kept constant since the performance of the vehicle through 
the first lane change is largely a function of the reaction time 
of the driver, while the focus of this study is on the controlla-
bility rather than reaction times. The obstacle offset b was set 
to 3.75 m which is a typical lane width for a variety of roads 
including freeways, highways and main country roads. The 
idea of the setup is to model an avoidance manoeuver whereby 
the entire right lane is blocked by an obstacle. The avoidance 
lane width c was set to the same distance. This is different to 
the ISO standard which uses the vehicle width in the lane width 
calculations. However, this allows for a more road realistic 
situation. The second lane change represents a secondary 
avoidance manoeuver (e.g. from oncoming traffic). The 
recovery length f was found to have a large impact on the results 
of the manoeuver since it requests an inversion of the yaw rate 
vector direction which induces critical sideslip velocities, 
particularly in unstable vehicles. This distance was the only 
variable distance within the simulation and was swept from 
35 m to 20 m with variations of 3 m between a test and another. 
Finally, the recovery lane width d was also set to 3.75 m and 
left constant. A summary of the geometrical features of the 
manoeuver is shown in Table 4.

Human Driver Results
Three different human drivers were used as a sample, all with 
significant simulator experience. The results shown represent 
the average result of the three drivers (Figure 8).

The tests for the human drivers were performed in the 
dynamic driving simulator using always the same motion 
cueing. The manoeuver success was defined as a passage of the 
entire obstacle without touching any cones. Every combination 
of vehicle static margin and recovery length was repeated ten 
times for each driver. This summed up to a total of three 
hundred data points. A correlation coefficient of approximately 
−0.7 was found between the recovery length and static margin 
(expressed as percentage points). Hence, every 1% decrease of 
static margin increases the required recovery distance by 0.7 m 
in the double lane change manoeuver for this particular test 
configuration with these reference drivers.

The vehicle with the highest peak grip (Step08) had very 
peculiar handling although it has more lateral grip capacity, its 

reaction to steering inputs is extremely slow (as expected from 
the results of the previous sections) to the point that any 
steering manoeuver required anticipation. The vehicle results 
in being practically unmanageable in transient changes of 
direction for a human driver due to the lack of rear 
cornering stiffness.

Autonomous Driver 
Results
An autonomous driver was developed to see the benefits of the 
“more unstable” vehicle. Unlike the human driver, a model 
predictive controller with a long enough prediction horizon 
and an accurate vehicle model allows to keep the lag effects 
into account. For this reason a NMPC was developed based on 
a validated seven degrees of freedom model (DOF). The 
controller sends the inputs and gets the feedback from the same 
Vi-CRT vehicle model used in the DiM. Another advantage of 
an MPC is that it is possible to use constraints, this allows to 
use the road boundaries as constraints and also limit the inputs. 
Two types of controllers were developed, a pure lateral one, 
where only the steering is actuated and a combined lateral-
longitudinal controller, where also the throttle and brake 
pedals can be actuated. The former controller is the one used 
to compare the benefits of different vehicle configurations when 
driven autonomously. The latter controller was used only to 
evaluate the benefits of combined slip and inputs but does not 
represent a comparison with the human driver. In the MPC 
setup this is a straight forward extension of the lateral controller.

Controller Overview
The controller developed is a NMPC based on a previously 
developed framework ([26, 27]). The vehicle model considered 
is a rigid body (pitch, roll, heave and warp are neglected) 
describing the global position in the X − Y plane, its global 
orientation Ψ and the center of gravity (COG) velocities vx, vy 

TABLE 4 Manoeuver geometry.

a b c d e f
Distance [m] 2.6 3.75 3.75 3.75 43 35-20

Variable no no no no no yes©
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 FIGURE 8  heat map of the human results - 
all configurations.
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and rz in an orthonormal reference frame with origin in the 
COG. The z-axis points upwards. The remaining DOFs are 
the four wheel velocities wij, with i being front (1) or rear (2) 
axis and j being left (1) or right (2) side. Finally, the load trans-
fers are modeled as first order systems. The dynamic longitu-
dinal ΔFzX and lateral ΔFzY load transfers are then used to 
calculate the vertical loads. A static load transfer cannot be 
used, since an algebraic loop is present. The loop in the 
equality constraints is eliminated with a dynamic formula-
tion. The slip ratios and slip angles are calculated with a kine-
matic formulation. The tire forces are evaluated with a full 
MF formulation whilst the aligning torques Mzij are neglected 
due to required computation time. The aero forces are also 
neglected (see previous work for full set of equations [26]).The 
reference line C, is transformed by describing it with a curvi-
linear abscissa approach. Thus, it can be expressed as a 
function of its curvature k and the parametrization of the 
curve by its arc-length s. With this approach, the states X, Y 
and Ψ can be replaced by the longitudinal position on the 
reference line s, the lateral error with respect to it 
n = ||(X, Y)T − (XC, YC)T||2 and the heading angle error with 
respect to it α = Ψ − θ. The road heading angle θ and (XC, YC) 
may be calculating by integrating the curvature as follows:

 d

ds
k s

dX

ds

dY

ds

C Cq q q= ( ) = ( ) = ( ); cos ; sin  

The new states can be found with the following set 
of equations:

 �s
v cos v sin

nk s
x y=

-
- ( )
a a

1
 

 �n v sin v cosx y= +a a  

 
�a W

a a
= -

-
- ( ) ( )v cos v sin

nk s
k sx y

1  

The reference path of the NMPC is the centerline between 
the cones interpolated with a piecewise cubic Hermite inter-
polating polynomial [28]. However, only after that the vehicle 
has passed the blocker the obstacles (constraints) are available 
and the path is generated. This way the robotic controller gets 
the obstacle information at the same position as the human. 
Once the vehicle passed the blocker and the reference path is 
available, the error input signal to the controller is different 
to zero and the online optimization of the NMPC begins. 

Until this point an open-loop full throttle and no steering 
policy is used just like for the human.

At this point, being x the state vector and u the input vector, 
the state space form set of equations becomes the following:

 x t s n v v r F Fx y z ij zX zY( ) = { }, , , , , , , , a w D D  

 �x t f t x t u t( ) = ( ) ( )( ), ,  

Where the system of equation is valid under the assump-
tion that the vehicle never stops (only necessary when trans-
forming all states), i.e. vx > 0, and the vehicle always stays at 
a lateral distance n that is greater than the distance of the local 
center of curvature of the road, i.e. n < k(s). A model trans-
formation from time-dependent vehicle dynamics to track-
dependent (spatial) dynamics is then proposed. This allows a 
natural formulation of obstacles and general road bounds 
under varying vehicle speed. The independent variable of the 
problem becomes s and no longer time t. This allows to elimi-
nate one equation in the state space, reducing it to 11.

The final state space is the following:

� �
�

�

x
dx

dt

dx

ds

ds

dt
sx x s

f x t u t

s

f s x s u s

= = = Þ ( ) =
( ) ( )( )

= ( ) ( )( )

¢ ¢
,

, ,

 

 x s n v v r F Fx y z ij zX zY( ) = { }, , , , , , , a w D D  

The set of equations is not singular only and if �s > 0.
The optimization problem is the following:

min
( ), ( )x s u s

s

s

ref Q R S

f

x x u u d

0

2 2 2ò ( ) - ( ) + ( ) + ( )( )� � � � � ��s s s s s

 s t x s f s x s u s. . ¢( ) = ( ) ( )( )� , ,  

 n s n s n s( )Î ( ) ( )éë ùûinf sup,  

 u s u s u s( )Î ( ) ( )éë ùûinf sup,  

 � � �u s u s u s( )Î ( ) ( )éë ùûinf sup,  

 x s x0 0( ) =  

For the implementation of the NMPC, Forces Pro [29] is 
used, and the included implicit Runge-Kutta method is used to 
discretize the above formulated NMPC problem. For the 
controller, only the most critical configurations were tested, thus, 
the manoeuver with recovery length equal to 20 m and the 
vehicle model Step08. However, to be able to compare the results 
with the human ones, also the original vehicle, configuration 
Step00 was tested. One of the 7% of the success manoeuvers of 
the human drivers for Step08 was selected as a reference. Unlike 
the human driver, the results of the NMPC controller is repeat-
able under ideal conditions. Note that, to be able to compare the 
passive vehicle dynamics for autonomous driving and not the 
performance of the controller itself, the controller was tuned for 
configuration Step08. The same tuning was then used for Step00. 
However, it could be possible to improve the performance of the 
original vehicle by properly tuning the controller.

 FIGURE 9  Road tracking.
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The results shown in this section have been obtained 
without considering any external disturbances or parameter 
uncertainty, a separate study would be necessary to investigate 
the controller’s performance in presence of such uncertainties. 
However, the goal of this paper is analyze how the passive 
stability can be varied comparing a robotic controller with a 
human driver and not to design the perfect autonomous 
driver. Therefore, the only model uncertainty is the simplifica-
tions in tire and vehicle models.

Lateral Controller Results
The lateral controller has the steering angle δ as the only input 
command, the driving torque Cm and braking torque Cb are 
kept constant and equal to zero. The steering wheel angle 
velocity is constrained to a value of 1000 deg/s. Note that the 
longitudinal equations are maintained in the controller’s 
equality constraints since for this manoeuver, particularly with 
the unstable vehicle, it is expected to drive at high sideslip angles, 
thus combined slip effects and induced drag become relevant. 
This controller was used to compare the human driver to the 
robotic controller. The goal of the paper is to show that with 
autonomous vehicles, it is possible to rethink how commercial 
vehicles are designed from a passive vehicle dynamics perspec-
tive. It is possible to increase the instability gaining performance 
in terms of peak grip despite the increase of time delay. The latter 
is very well dealt by the NMPC as will be shown now.

The steering profiles and positions in the X − Y plane 
(Figure 10) show that as expected, the reaction time of the 
controller is much faster than the human driver. In fact, 
the blocker does not influence the delay in the response, 
unlike for the human. This simplifies a lot the manoeuver for 
the controller as it is not required to increase the steering 
angle and incur into high sideslip angles, especially for the 
unstable vehicle. While for the human driver the steering 
profile for the stable vehicle is much smoother than the 
unstable one, for the NMPC the unstable vehicle has a much 
smoother profile. This is due to the fact that the controller is 
predictive, hence the future time delays are modeled. Thus, 
since the unstable model has very little yaw damping due to 
the low rear cornering stiffness, its turning capacity is very 
high, this allows to actually anticipate the manoeuver and 
steer less. On the other hand, the stable vehicle is harder to 
drive for the controller since the controllable front wheels are 
near the saturation and have lower grip, additionally to the 

high yaw damping given by the rear axle. As a result, the 
unstable configurations has a higher safety margin from the 
constraints compared to the stable one. Also note that 
the controller tuning was obtained using the unstable vehicle, 
thus proper tuning could improve the performance.

The peaks and pits of the steering profiles of the controller 
are more numerous compared to the human driver. This is 
the big advantage of having a motor with high power control-
ling the steering wheel instead of a human. However, this also 
results in a very unnatural way of driving. Each steering 
manoeuver has in fact a counter steering input to stabilize the 
vehicle. One of the key aspects is that the human driver neces-
sitates high lateral acceleration (Figure 11) due to the delays. 
Contrarily, the lateral accelerations of the controller are far 
from the vehicle’s full potential because of the prediction 
horizon. Also, although the yaw rate for the robotic controller 
oscillates a lot resulting in a jerkier manoeuver, the maximum 
and average values are much lower. As expected, even with a 
smoother steering angle profile, the unstable configuration 
for the controller reaches higher yaw rates and sideslip angles 
in the second avoidance manoeuver where the yaw rate vector 
sign inversion and high sideslip velocities are requested.

The human driver and robotic controller for the two 
configurations are compared (Figure 12) using different 
metrics and plotting them in a spider plot. In particular, it is 
interesting to notice the different steering requests for the 

 FIGURE 10  Lateral controller results - position and 
steering profiles.
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 FIGURE 11  Lateral controller results - lateral acceleration, 
yaw rate and sideslip angle profiles.
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 FIGURE 12  Lateral controller results - spider plot.
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various cases (|δ|mean, |δ|max ), how much lateral acceleration 
is needed to complete the manoeuver and how much grip is 
consequently still available (|ay|mean, |ay|max) and finally, how 
much the vehicle is actually turning and slipping with the 
given steering profile (|rz|mean, |rz|max, |β|mean, |β|max). The results 
show that the unstable vehicle controlled by the NMPC has 
better values respect to both to the stable vehicle driven by 
the robotic controller and the human driver in 
both configuration.

Combined Controller Results
Since the maximum lateral acceleration of the lateral controller 
was far from the peak, in this section we test if the additional 
control authority of a combined controller can further 
improve the performance. The execution of the manoeuver is 
still the same, with the lift off at the last cone and start of the 
inputs only after the blocker. However, this time the controller 
can also brake or accelerate. To make sure the vehicle would 
complete the manoeuver in the quickest time possible (to 
exploit the vehicles performance), an additional cost � �D V T

2  
was added to the NMPC cost function. This cost is on the 
difference in the vehicle’s forward velocity and the initial 
manoeuver speed. Once again, the tuning of the controller 
was done on the configuration Step08.

During the first steering manoeuver (Figure 13), the 
combined controller reaches higher steering angles, lateral 
accelerations, sideslip angles and yaw rates. This is due to the 
controller braking as it enters the other lane. This induces an 
even larger weight transfer, reducing the yaw damping. 
However, because the front tires are working under combined 
slip and the cornering stiffness is lower, the steering angle 
requested is higher. The steering angle profiles of the combined 
controllers are smoother than the pure lateral ones due to the 
combined effects (which gives induced yaw moments) and the 
possibility of varying the speed with the longitudinal controls.

During the second avoidance, the sideslip angle and yaw 
rate of the combined controller on the unstable vehicle reaches 
much higher values than the lateral controller. This is because 
after the first braking manoeuver, the controller forces the 
vehicle to accelerate reducing the lateral force produced by 
the rear tires. The combined controller spider plot (Figure 15) 
looks very similar to that of the human driver (Figure 12) but 
with a similar steering profile to the lateral controller. 

However, even if the accelerations are very similar, the sideslip 
angle and yaw rate are much lower, showing that even with 
an unstable vehicle, the robotic controller is capable of main-
taining high controllability. The combined controller spider 
plots are larger than the lateral controller ones since the 
manoeuver execution time for the former is significantly lower 
than the latter and more grip is used. Furthermore, the 
combined controller on the unstable vehicle has a lower execu-
tion time and higher accelerations than the stable vehicle 
controller by the NMPC.

Conclusions
A sweep of manoeuver geometry and vehicle stability showed 
the dependence of both parameters on the ability to perform 
a closed-loop avoidance manoeuver. Both a series of human 
drivers and NMPC controllers were compared through the 
same sweep of vehicle stability and manoeuver geometry. The 
robotic controller completed all of the setups and manoeuver 
geometries successfully but the unstable setups required 
piloting in a very unnatural way in order to keep the vehicle 
response damped. The possibility of controlling both the 
longitudinal and the lateral behavior showed great advantages. 
The results obtained open up new possibilities in the design 
of passive vehicle dynamics with autonomous vehicles. 
Particularly, the passive stability could be varied depending 

 FIGURE 13  Combined controller results - position and 
steering profiles.
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 FIGURE 14  Combined controller results - lateral 
acceleration, yaw rate and sideslip angle profiles.
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 FIGURE 15  Combined controller results - spider 
plot comparing.
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on the driving situation in order to exploit the vehicle perfor-
mance. A vehicle with lower static margin gains in peak lateral 
performance and in this paper it has been shown that, unlike 
a human driver, a robotic controller can take advantage of 
this despite the lower stability. In future work it would be 
interesting to investigate low level controls which allow 
changing the static margin to adjust to a given task to get the 
best of both worlds.
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