Real Time Control for Autonomous Racing based on Viability Theory

Alex Liniger

29 September, 2016

Automatic Control Laboratory, ETH

Zurich

www.control.ee.ethz.ch

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Autonomous driving

Autonomous racing

- · Google:
 - ► 1.600.000 km (2015)
- Every major car company

- Driving at handling limit
- ROBORACE in Formula E
- · 2016 2017 session

Autonomous driving

Autonomous racing

- · Google:
 - 1.600.000 km (2015)
- Every major car company

- Driving at handling limit
- ROBORACE in Formula E
- · 2016 2017 session

Experimental set-up

Experimental set-up

Layout

- Introduction
- Hierarchical controller
- Viability kernel
- Error due to space discretization
- Viability kernel in autonomous racing
- Simulation and Experimental results
- Conclusion

• Bicycle model, with nonlinear lateral tire forces (Pacejka)

$$\dot{X} = v_x \cos(\varphi) - v_y \sin(\varphi)$$
$$\dot{Y} = v_x \sin(\varphi) + v_y \cos(\varphi)$$
$$\dot{\varphi} = \omega$$
$$\dot{v}_x = \frac{1}{m} (F_{r,x} - F_{f,y} \sin \delta + m v_y \omega)$$
$$\dot{v}_y = \frac{1}{m} (F_{r,y} + F_{f,y} \cos \delta - m v_x \omega)$$
$$\dot{\omega} = \frac{1}{I_z} (F_{f,y} l_f \cos \delta - F_{r,y} l_r)$$

Highly nonlinear 6 dimensional system

• Bicycle model, with nonlinear lateral tire forces (Pacejka)

$$\dot{X} = v_x \cos(\varphi) - v_y \sin(\varphi)$$
$$\dot{Y} = v_x \sin(\varphi) + v_y \cos(\varphi)$$
$$\dot{\varphi} = \omega$$
$$\dot{v}_x = \frac{1}{m} (F_{r,x} - F_{f,y} \sin \delta + m v_y \omega)$$
$$\dot{v}_y = \frac{1}{m} (F_{r,y} + F_{f,y} \cos \delta - m v_x \omega)$$
$$\dot{\omega} = \frac{1}{I_z} (F_{f,y} l_f \cos \delta - F_{r,y} l_r)$$

- Highly nonlinear 6 dimensional system
- Separation is slow and fast dynamics

• Bicycle model, with nonlinear lateral tire forces (Pacejka)

$$\dot{X} = v_x \cos(\varphi) - v_y \sin(\varphi)$$
$$\dot{Y} = v_x \sin(\varphi) + v_y \cos(\varphi)$$
$$\dot{\varphi} = \omega$$
$$\dot{v}_x = \frac{1}{m} (F_{r,x} - F_{f,y} \sin \delta + m v_y \omega)$$
$$\dot{v}_y = \frac{1}{m} (F_{r,y} + F_{f,y} \cos \delta - m v_x \omega)$$
$$\dot{\omega} = \frac{1}{I_z} (F_{f,y} l_f \cos \delta - F_{r,y} l_r)$$

- Highly nonlinear 6 dimensional system
- Separation is slow and fast dynamics

• Bicycle model, with nonlinear lateral tire forces (Pacejka)

- Highly nonlinear 6 dimensional system
- Separation is slow and fast dynamics

Hierarchical Control Structure

- "Path planning" based on constant velocity model
 - Plan for the slow dynamics
 - reduced dimension
 - "slow" actuation times
- Tracking planned path using MPC
 - Following path given the full dynamics
 - path planner gives linearization points

Time Scale Separation - Constant Velocities

- Velocities (v_x, v_y, ω) "always" at steady state
- find points where (v_x, v_y, ω) are constant

- Gridding stationary velocity points
- Library of possible movements (Motion Primitives)
- Low dimensional grid (~100) can capture the whole system

Path Planning

- Library of constant velocity "primitives"
- Assumptions:
 - new constant velocity can be reached immediately
 - stay at the constant velocity for a fix time period $T_{\rho\rho}$

$$\dot{X} = \bar{v}_x(q)\cos(\varphi) - \bar{v}_y(q)\sin(\varphi)$$
$$\dot{Y} = \bar{v}_x(q)\sin(\varphi) + \bar{v}_y(q)\cos(\varphi)$$
$$\dot{\varphi} = \bar{\omega}(q)$$
$$\bar{v}(q) = [\bar{v}_x(q), \bar{v}_y(q), \bar{\omega}(q)]$$

- Transition between constant velocity are restricted:
 - only transitions that are feasible for the dynamics are considered -> adds a discrete mode

Path Planning

- Tree of possible trajectories
 - exclude all trajectories that leave the track
 - Find the best trajectories with the largest progress

- Tree grows exponentially in the horizon
- Time to check track constraints is the bottle neck
- Optimal trajectory often not recursive feasible/viable

Path Planning

- Only generate recursive feasible/viable trajectories
 - exclude all trajectories the Find the best trajectories
- Tree grows exponentially
- All trajectories are recursive feasible/viable

Difference Inclusion

- We look at controlled discrete time system of the form $x_{k+1} = f(x_k, u_k)$
- Assumptions:

 $x \in \mathbb{R}^n$ $u \in U \subset \mathbb{R}^m$ $f : \mathbb{R}^n \times U \to \mathbb{R}^n$ is continuous f is L Lipschitz w.r.t. x

The system can be reformulated as a difference inclusion

$$x_{k+1} \in F(x_k) = \{f(x_k, u_k) \mid u_k \in U\}$$

$$F(x)$$

Viability Theory

- Given:
 - a difference inclusion $x_{k+1} \in F(x_k)$
 - $K \subset \mathbb{R}^n$ is a compact set

• a solution is viable if:
$$\begin{cases} x_{k+1} \in F(x_k) & \forall k \ge 0 \\ x_0 = x \in K \\ x_k \in K & \forall k \ge 0 \end{cases}$$

Definition 1: *[Saint-Pierre 94]*
Let
$$F : \mathbb{R}^n \to \mathbb{R}^n$$
 be a set valued map. A closed
subset $D \subset \mathbb{R}^n$ is a **viability domain** of F if;
 $\forall x \in D, \quad F(x) \cap D \neq \emptyset$

• The **viability kernel** *Viab_F(K)*, is the largest closed viability domain contained in *K*

D

Viability Kernel Algorithm

- Given:
 - a discrete difference inclusion $x_{k+1} \in F(x_k)$
 - $K \subset \mathbb{R}^n$ is a compact set
- Construction of *Viab_F(K)*:
 - Sequence of nested subsets $K^0 = K$

$$K^{n+1} = \{ x \in K^n | F(x) \cap K^n \neq \emptyset \}$$

Proposition 1: [Saint-Pierre 94]

Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a upper-semicontinuous set-valued map with closed values and let *K* be a compact subset of Dom(F)

$$Viab_F(K) = \bigcap_{n=0}^{\infty} K^n$$

Finite Viability Kernel Algorithm

• Discretization by introducing a countable subset X_h

$$\forall x \in \mathbb{R}^n \quad \exists x_h \in X_h : \quad \|x - x_h\|_{\infty} \le r$$

- Discretization of the set-valued may be empty
- Extended finite difference inclusion

$$x_{h,k+1} \in F_h^r(x_{h,k}) = (F(x_{h,k}) + rB) \cap X_h$$

Viability kernel does not change

$$Viab_{F_h^r}(K_h) = \bigcap_{n=0}^{\infty} K_h^{r,n}$$

and converges in a finite number of steps

Finite Viability Kernel Algorithm

• With $x_{h,k+1} \in F_h^r(x_{h,k}) = (F(x_{h,k}) + rB) \cap X_h$ and mild conditions on *F* and *K*, we have:

[Saint-Pierre 94]

The finite viability kernel does converge with the true kernel

$$\bigcap_{r>0} Viab_{F_h^r}(K_h) = Viab_F(K)$$

[Saint-Pierre 94]

The finite kernel inner approximates the "true" viability kernel in the following way

$$Viab_{F_h^r}(K_h) \subset (Viab_{F^r}(K) \cap X_h)$$

Finite Viability Kernel Algorithm

• With $x_{h,k+1} \in F_h^r(x_{h,k}) = (F(x_{h,k}) + rB) \cap X_h$ and mild conditions on *F* and *K*, we have:

[Saint-Pierre 94]

The finite viability kernel does converge with the true kernel

$$\bigcap_{r>0} Viab_{F_h^r}(K_h) = Viab_F(K)$$

[Saint-Pierre 94]

The finite kernel inner approximates the "true" viability kernel in the following way

$$Viab_{F_h^r}(K_h) \subset (Viab_{F^r}(K)) \cap X_h)$$

Error due to Space Discretization

• Given
$$x_{k+1} = f(x_k, u_k)$$

- current state only known to lie within a box of radius r
- we can bound the error, using Lipschitz continuity:

$$x_{k+1} \in f(x_k, u_k) + LrB_{\infty}$$

- Idea: Robustify viability kernel against this uncertainty
 - Formulate as an additive disturbance

Robust Viability Kernel - Qualitative Game

• Starting point - discrete time system with 2-inputs

$$x_{k+1} = g(x_k, u_k, v_k)$$

Assumptions:

 $x \in \mathbb{R}^n \quad u \in U \subset \mathbb{R}^m \quad v \in V \subset \mathbb{R}^p$

 $f: \mathbb{R}^n \times U \times V \to \mathbb{R}^n$ is continuous

f is L Lipschitz w.r.t. x

- Dynamic game between the control and the disturbance
 - disturbance input tries to reach the open set $\mathbb{R}^n \setminus K$
 - control input tries to prevent this event
- Victory domain, can be computed using a slightly adapted viability kernel algorithm
- Feedback policy depends on state and disturbance

Discriminating Kernel Algorithm

• Reformulate difference equation as difference inclusion $x_{k+1} \in G(x_k, v_k) = \{g(x, u, v) | u \in U\}$

Definition 2: [Cardaliaguet 99]

A closed subset $Q \subset \mathbb{R}^n$ is a **discriminating domain** of G if;

 $\forall x \in Q, \quad G(x,v) \cap Q \neq \emptyset \quad \forall v \in V$

The largest discriminating domain of G contained in K is called the **discriminating kernel**, denoted by $Disc_G(K)$

Algorithm to calculate the discriminating kernel

$$K^{0} = K$$
$$K^{n+1} = \{ x \in K^{n} | \forall v \in V, \ G(x, v) \cap K^{n} \neq \emptyset \}$$

• Algorithm converges under mild assumptions to *Disc_G(K)*

Space Discretisation Robust Viability Kernel

• Using the following difference inclusion

 $x_{k+1} \in G(x_k, v_k) = F(x_k) + v_k \quad \forall v_k \in LrB_{\infty}$

• The following properties hold for $Disc_G(K)$

1.)
$$\bigcap_{r>0} Disc_G(K) = Viab_F(K).$$

2.) $Disc_G(K)$ is a viability domain of F.

3.)
$$\forall x \in Disc_G(K) \text{ and } \forall \hat{x} \in x + rB_{\infty}$$

 $\exists u \in U : f(\hat{x}, u) \in Disc_G(K).$

- Motivated by space discretization:
 - **BUT** results hold for continuous space

Finite Inner Approximation

- space discretisation leads to an inner approximation
- disturbance space discretization causes problems
 - not all possible disturbances are considered!

• Simple 1-D example with a 2-input set valued map

Finite Disturbance Space

- Find relationship between disturbance grid point and continuous disturbances
- Assumptions:
 - · discrete input space (we can always discretize)
 - regular state and disturbance grids
- For every **disturbance grid point** v_h and **control** u_h , there exists a subset $\tilde{V}(u_h, v_h)$ that maps to the same grid point

}

$$\begin{aligned} x_h^* &= (f(x_h, u_h) + v_h + rB_\infty) \cap X_h \\ \tilde{V}(u_h, v_h) &= \{ v \in V | \\ \|x_h^* - (f(x_h, u_h) + v)\|_\infty \leq r \end{aligned}$$

Finite Disturbance Space

- Use link between discrete and continuous disturbance $G_h^r(x_h, v) \cap K_h^n \neq \emptyset \quad \forall v \in V$ $G_h^r(x_h, v_h) \cap K_h^n \neq \emptyset \quad \forall v_h \in V_h$
- 2-D example with 2 discrete inputs

- Union of the blue sets should be equal to V
- We can efficiently compute the sets $\tilde{V}(u_h, v_h)$ and conservatively verify that the union is equal to V

Finite Inner Approximation

- Using the propose algorithm the finite discriminating kernel is an inner approximation
 - First two properties of Proposition still hold
 - Third point changes

Proposition:

If the proposed algorithm is used and *r* is identical to the regular grid spacing:

$$\forall x_h \in Disc_{G_h^r}(K_h) \text{ and } \forall \hat{x} \in x_h + rB_{\infty}$$
$$\exists u_h \in U_h : f(\hat{x}, u_h) \in (Disc_{G_h^r}(K) + rB_{\infty})$$

Reconstructing Viable Controls

Exploiting this guarantee using predictive controller

$$\min_{x,u_h} \sum_{k=0}^{N_S} J(x_k, u_k)$$

s.t. $x_0 = x$
 $x_{k+1} = f(x_k, u_{h,k}), \quad u_{k,h} \in U_h$
 $f(x_k, u_{k,h}) \in Disc_{G_h^r}(K_h) + rB_\infty$

When using viability kernel we can even pre-compute all viable inputs

$$U_{\rm V}(x_h) = \begin{cases} \begin{cases} u_h \in U_h \mid \\ f(x_h, u_h) + rB_{\infty} \\ \cap Viab_{F_h^r}(K_h) \neq \emptyset \end{cases} & \text{if } x_h \in \\ Viab_{F_h^r}(K_h) \neq \emptyset \end{cases} & \text{otherwise} \end{cases}$$

Autonomous Racing - Path Planning Model

Path planning model is a data-sampled system with ZOH

- · Idea:
 - formulate as a discrete time system
 - difference inclusion reformulation
 - · deal with continuous evolution in a pre-processing step

Exclude all inputs which leave track from the set-valued map

Viability and Discriminating Kernel

- Constraint set $K := \begin{cases} (X, Y) \in \mathcal{X}_{\text{Track}}, \\ \varphi \in [0, 2\pi], \\ q \in Q. \end{cases}$
- Gridding:
 - $(X, Y) \rightarrow 4/3$ cm between grid points
 - · $\phi \rightarrow 0.04/0.03$ rad between grid points
 - q -> 129 modes

Viability and Discriminating Kernel

- Constraint set $K := \begin{cases} (X, Y) \in \mathcal{X}_{\text{Track}}, \\ \varphi \in [0, 2\pi], \\ q \in Q. \end{cases}$
- Gridding:
 - $(X, Y) \rightarrow 4/3$ cm between grid points
 - · $\phi \rightarrow 0.04/0.03$ rad between grid points
 - q -> 129 modes

Simulation Results

- Every 20 ms redo path planning and MPC step
- Simulation using full non-linear model
- Based on sensitivity study we determined
 - T_{pp} = 0.16 s
 - $N_{S} = 3$
 - $N_M = 129$

Comparing: Viability vs Discrimination vs no kernel

Kernel	mean lap time [s]	<pre># constr. violations</pre>	median comp. time [ms]	max comp. time [ms]
No	8.76	4	32.26	247.7
Viab	8.57	0	0.904	7.968
Disc	8.60	1	0.870	7.533

Simulation Results - Viab vs Disc

- Most of the time similar driving
- Disc based controller breaks earlier thereby achieving higher cornering speeds
- Two effects compensate each other leading to the practically the same mean lap time

Experimental Results

Kernel	mean lap time [s]	constr. violations prob. [%]	median comp. time [ms]	max comp. time [ms]
Viab	8.85	0.834	1.124	10.164
Disc	8.996	0.244	1.169	12.839

Conclusion

- We showed:
 - a control approach for real time autonomous racing
 - how viability theory can help to speed up computation while improving the performance
 - how viability and terminal set constraint can help in predictive controllers
- We introduce a new numerical scheme to compute the viability kernel, which incorporates the uncertainty introduce by gridding the state space

Outlook

- Pruning based on upper bound on the cost
- Improving MPC (e.g., NLP solver, including uncertainty)
- Terminal state constraints in MPC, recursive feasibility for the whole system
- Use the viability based controller to implement noncooperative racing games

