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Car Model

• Bicycle model, with nonlinear lateral tire forces (Pacejka)
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Hierarchical Control Structure

• “Path planning” based on constant velocity model

• Plan for the slow dynamics

• reduced dimension

• “slow” actuation times


• Tracking planned path using MPC

• Following path given the full dynamics

• path planner gives linearization points
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Time Scale Separation - Constant Velocities

• Velocities (vx,vy,ω) “always” at steady state

• find points where (vx,vy,ω) are constant

7

• Gridding stationary velocity points

• Library of possible movements (Motion Primitives)

• Low dimensional grid (~100) can capture the whole system
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Path Planning

• Library of constant velocity “primitives”

• Assumptions:


• new constant velocity can be reached immediately

• stay at the constant velocity for a fix time period Tpp
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• Transition between constant velocity are restricted:

• only transitions that are feasible for the dynamics are 

considered -> adds a discrete mode



Alex Liniger |  IfA Coffee Talk : 29-9-2016  |  

Path Planning

9

• Tree of possible trajectories

• exclude all trajectories that leave the track

• Find the best trajectories with the largest progress
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• Tree grows exponentially in the horizon

• Time to check track constraints is the bottle neck

• Optimal trajectory often not recursive feasible/viable
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Path Planning

10

• Only generate recursive feasible/viable trajectories

• exclude all trajectories that leave the track

• Find the best trajectories with the largest progress
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• Tree grows exponentially in the horizon

• check track constraints is not necessary

• All trajectories are recursive feasible/viable
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• We look at controlled discrete time system of the form


• Assumptions:


• The system can be reformulated as a difference inclusion
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Difference Inclusion
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xk+1 = f(xk, uk)

xk+1 � F (xk) = {f(xk, uk) | uk � U}

x

F(x)

x � Rn u � U � Rm

f : Rn � U � Rn is continuous

f is L Lipschitz w.r.t. x
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Viability Theory

• Given:

• a difference inclusion 

•                is a compact set 


• a solution is viable if:


• The viability kernel ViabF(K), is the largest closed viability 
domain contained in K

12

Definition 1: [Saint-Pierre 94]

Let                      be a set valued map. A closed 
 subset              is a viability domain of F if;


�
�

�

xk+1 � F (xk) �k � 0
x0 = x � K
xk � K �k � 0

xk+1 � F (xk)

�x � D, F (x) � D �= �
D

x

F(x)

K � Rn

F : Rn � Rn

D � Rn



Proposition 1: [Saint-Pierre 94]

Let                       be a upper-semicontinuous set-valued map 
with closed values and let K be a compact subset of Dom(F)
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Viability Kernel Algorithm

• Given:

• a discrete difference inclusion

•                is a compact set 


• Construction of ViabF(K):

• Sequence of nested subsets

13
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1\
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Finite Viability Kernel Algorithm

• Discretization by introducing a countable subset 


• Discretization of the set-valued may be empty

• Extended finite difference inclusion


• Viability kernel does not change 


• and converges in a finite number of steps
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[Saint-Pierre 94]

The finite viability kernel does converge with the true kernel

[Saint-Pierre 94]

The finite kernel inner approximates the “true” viability 
kernel in the following way
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Finite Viability Kernel Algorithm

• With                                                                    and mild 
conditions on F and K, we have:

15

xh,k+1 � F r
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Error due to Space Discretization 

• Given 

• current state only known to lie within a box of radius r
• we can bound the error, using Lipschitz continuity:


• Idea: Robustify viability kernel against this uncertainty

• Formulate as an additive disturbance

16

xk+1 = f(xk, uk)

xk+1 2 f(xk, uk) + LrB1

f(x,û)

f(x+v*,û)

x + rB∞

f(x,û) + LrB∞

x+v*

x

xk+1 = f(xk, uk) + vk, �vk � LrB�
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Robust Viability Kernel - Qualitative Game

• Starting point - discrete time system with 2-inputs


• Assumptions:


• Dynamic game between the control and the disturbance

• disturbance input tries to reach the open set

• control input tries to prevent this event


• Victory domain, can be computed using a slightly adapted 
viability kernel algorithm


• Feedback policy depends on state and disturbance

17

xk+1 = g(xk, uk, vk)

Rn \K

x � Rn u � U � Rm v � V � Rp

f : Rn � U � V � Rn is continuous

f is L Lipschitz w.r.t. x
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Discriminating Kernel Algorithm

• Reformulate difference equation as difference inclusion


• Algorithm to calculate the discriminating kernel


• Algorithm converges under mild assumptions to DiscG(K)

18

Definition 2: [Cardaliaguet 99]

A closed subset              is a discriminating domain of G if;


The largest discriminating domain of G contained in K is called 
the discriminating kernel, denoted by DiscG(K)

8x 2 Q, G(x, v) \Q 6= ; 8v 2 V

K0 = K

Kn+1 = {x 2 Kn| 8v 2 V, G(x, v) \Kn 6= ;}

xk+1 2 G(xk, vk) = {g(x, u, v)|u 2 U}

Q � Rn



Proposition: 
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Space Discretisation Robust Viability Kernel

• Using the following difference inclusion


• The following properties hold for DiscG(K)

19

1.)
�

r>0 DiscG(K) = V iabF (K).

2.) DiscG(K) is a viability domain of F.

3.) �x � DiscG(K) and �x̂ � x + rB�,

�u � U : f(x̂, u) � DiscG(K) .

x

F(x)

xk+1 � G(xk, vk) = F (xk) + vk �vk � LrB�

• Motivated by space discretization:

• BUT results hold for continuous space



• space discretisation leads to an inner approximation 

• disturbance space discretization causes problems


• not all possible disturbances are considered!


• Simple 1-D example with a 2-input set valued map
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Finite Inner Approximation
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Finite Disturbance Space

• Find relationship between disturbance grid point and 
continuous disturbances


• Assumptions:

• discrete input space (we can always discretize)

• regular state and disturbance grids 


• For every disturbance grid point vh and control uh, there 
exists a subset                that maps to the same grid point

21

x*
h

V
~

(u
h
,v

h
) v

h

f(x
h
,u

h
)

x�h = (f (xh, uh) + vh + rB�) �Xh

Ṽ (uh, vh) = {v � V |
�x�h � (f (xh, uh) + v)�� � r}

Ṽ (uh, vh)
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Finite Disturbance Space

• Use link between discrete and continuous disturbance


• 2-D example with 2 discrete inputs 


• Union of the blue sets should be equal to V 
• We can efficiently compute the sets                and 

conservatively verify that the union is equal to V
Ṽ (uh, vh)

Gr
h(xh, v) � Kn

h �= � �v � V

Gr
h(xh, vh) � Kn

h �= � �vh � Vh



• Using the propose algorithm the finite discriminating kernel 
is an inner approximation

• First two properties of Proposition still hold

• Third point changes

Proposition:  
If the proposed algorithm is used and r is identical to the 
regular grid spacing:
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Finite Inner Approximation

23

�xh � DiscGr
h
(Kh) and �x̂ � xh + rB�

�uh � Uh : f(x̂, uh) � (DiscGr
h
(K) + rB�)
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Reconstructing Viable Controls

• Exploiting this guarantee using predictive controller


• When using viability kernel we can even pre-compute all 
viable inputs

24

min
x,uh

NS�

k=0

J(xk, uk)

s.t. x0 = x

xk+1 = f(xk, uh,k) , uk,h � Uh

f(xk, uk,h) � DiscGr
h
(Kh) + rB�

UV(xh) =

�
�����

�����

�
�

�

uh � Uh |
f(xh, uh) + rB�
�V iabF r

h
(Kh) �= �

�
�

�
if xh �
V iabF r

h
(Kh)

� otherwise

.



Alex Liniger |  IfA Coffee Talk: 29-9-2016  |  

Autonomous Racing - Path Planning Model

• Path planning model is a data-sampled system with ZOH


• Idea: 

• formulate as a discrete time system

• difference inclusion reformulation

• deal with continuous evolution in a pre-processing step


• Exclude all inputs which leave track from the set-valued map
25
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Viability and Discriminating Kernel

• Constraint set 


• Gridding: 

• (X,Y) -> 4/3 cm between grid points 

• φ -> 0.04/0.03 rad between grid points

• q -> 129 modes

26
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Simulation Results

• Every 20 ms redo path planning and MPC step

• Simulation using full non-linear model

• Based on sensitivity study we determined


• Tpp = 0.16 s 

• NS = 3

• NM = 129


• Comparing: Viability vs Discrimination vs no kernel
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Simulation Results - Viab vs Disc
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• Most of the time similar driving

• Disc based controller breaks earlier thereby achieving 

higher cornering speeds

• Two effects compensate each other leading to the 

practically the same mean lap time
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Experimental Results
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Conclusion

• We showed:

• a control approach for real time autonomous racing

• how viability theory can help to speed up computation while 

improving the performance

• how viability and terminal set constraint can help in predictive 

controllers

• We introduce a new numerical scheme to compute the 

viability kernel, which incorporates the uncertainty 
introduce by gridding the state space

30
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Outlook

• Pruning based on upper bound on the cost

• Improving MPC (e.g., NLP solver, including uncertainty)

• Terminal state constraints in MPC, recursive feasibility for 

the whole system

• Use the viability based controller to implement non-

cooperative racing games
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